

 Solutions des Équations Intégrales$$
\begin{aligned}
& \varphi(\mathrm{x})=\lambda \int_{\mathrm{a}}^{\mathrm{x}} \mathrm{~K}(\mathrm{x}, \mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt} \text { 祘 } 0 \\
& \int^{\mathrm{x}} \mathrm{~K}(\mathrm{x}, \mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}=\mathrm{f}(\mathrm{x}) \\
& \text { a } \\
& \varphi(x)=f(x)+\lambda \int_{0}^{x} K(x, t) \varphi(t) d t
\end{aligned}
$$

> คัง.ด้ 2009
> …mer..................

జิต

Sofutions des Équations Intégrales

 ตโ|

งกุทธิฐิ

ตรงสึรร

มีติร
 ๑
 อ
 6
 \odot
 อ๘
 vat
 MOD
 ๓
๒． ธ nc
 ๔อ
 ๕．C
 30
 る
ห dృO
 cృఱ
 C゚๔
 dる

ใโตูรัฉ๊จ

(Équations Intégrales de Volterra)
9.Q. AรM

$$
\begin{equation*}
\varphi(x)=f(x)+\lambda \int_{a}^{x} K(x, t) \varphi(t) d t \tag{1.1}
\end{equation*}
$$

 $\mathrm{f}(\mathrm{x}) \equiv 0$ รตาะเสยีการ (1.1) ราธถรเสงรนา

$$
\begin{equation*}
\varphi(x)=\lambda \int_{a}^{x} K(x, t) \varphi(t) d t \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{a}^{x} K(x, t) \varphi(t) d t=f(x) \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)=\frac{1}{1+x^{2}}-\int_{0}^{x} \frac{t}{1+x^{2}} \varphi(t) d t \tag{1.4}
\end{equation*}
$$

$$
\begin{aligned}
\frac{1}{1+x^{2}}-\int_{0}^{x} \frac{t}{1+x^{2}} \varphi(t) d t & =\frac{1}{1+x^{2}}-\int_{0}^{x} \frac{t}{1+x^{2}} \frac{1}{\left(1+t^{2}\right)^{3 / 2}} d t \\
& =\frac{1}{1+x^{2}}-\left.\frac{1}{1+x^{2}}\left(-\frac{1}{\left(1+t^{2}\right)^{1 / 2}}\right)\right|_{t=0} ^{t=x} \\
& =\frac{1}{1+x^{2}}+\frac{1}{\left(1+x^{2}\right)^{3 / 2}}-\frac{1}{1+x^{2}} \\
& =\frac{1}{\left(1+x^{2}\right)^{3 / 2}}=\varphi(x) \text { ติส }
\end{aligned}
$$

$$
\begin{equation*}
\int_{0}^{x} e^{x-t} \varphi(t) d t=x \tag{1.5}
\end{equation*}
$$

$$
\begin{aligned}
\int_{0}^{x} e^{x-t} \varphi(t) d t & =\int_{0}^{x} e^{x-t}(1-t) d t \\
& =e^{x} \int_{0}^{x} e^{-t}(1-t) d t
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}=1-\mathrm{t} \quad \Rightarrow \quad \mathrm{du}=-\mathrm{dt} \\
& \text { बิt } \mathrm{dv}=e^{-t} d t \Rightarrow \mathrm{v}=-e^{-t} \\
& \text { जiใ̧ } \int_{0}^{x} e^{-t}(1-t) d t=-\left.(1-t) e^{-t}\right|_{0} ^{x}-\int_{0}^{x} e^{-t} d t \\
& =-(1-x) e^{-x}+1+\left.e^{-t}\right|_{0} ^{x}
\end{aligned}
$$

$$
\begin{aligned}
& =-(1-x) e^{-x}+1+e^{-x}-1 \\
& =x e^{-x}
\end{aligned}
$$

ปู่นั่ร $\int_{0}^{x} e^{x-t} \varphi(t) d t=e^{x}\left(x e^{-x}\right)=x$ ติต

 \qquad 9

 ตรูา λ ลิ่เ $\lambda+\mathrm{d} \lambda$ เตาะเธตตร:

$$
\begin{equation*}
\frac{\partial f(\lambda, x)}{\partial x}=-\mu f(\lambda, x)+\int_{0}^{\lambda} P(\lambda, \tau) f(\tau, x) d \tau \tag{1.6}
\end{equation*}
$$

 बิt $\lambda+d \lambda$ ฯ

 โชีเนกาเร

$$
\begin{equation*}
f(\lambda, x)=\int_{0}^{\infty} e^{-p x} \psi(\lambda, p) d p \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\psi(\lambda, p)=\frac{1}{\mu-p} \int_{0}^{\lambda} P(\lambda, \tau) \psi(\tau, p) d \tau \tag{1.8}
\end{equation*}
$$

 Е్లైకรัณรร้รู (Liaison entre les équations différentielles linéaires et les équations intégrales de Volterra)

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}+a_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots \ldots+a_{n}(x) y=F(x) \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
y(0)=C_{0}, \quad y^{\prime}(0)=C_{1}, \ldots \ldots, \quad y^{(n-1)}(0)=C_{n-1} \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=F(x) \tag{1.11}
\end{equation*}
$$

คิ่
เพึ่เกาเร $\frac{d^{2} y}{d x^{2}}=\varphi(x)$

$$
\underbrace{\int_{x_{0}}^{x} d x \int_{x_{0}}^{x} d x \ldots \ldots \int_{x_{0}}^{x}}_{n} f(x) d x=\frac{1}{(n-1)!} \int_{x_{0}}^{x}(x-z)^{n-1} f(z) d z
$$

เชีเฉตรร :

$$
\begin{equation*}
\frac{d y}{d x}=\int_{0}^{x} \varphi(t) d t+C_{1} \tag{1.14}
\end{equation*}
$$

बิ่

$$
y=\int_{0}^{x}(x-t) \varphi(t) d t+C_{1} x+C_{0}
$$

$$
\begin{aligned}
\varphi(x)+\int_{0}^{x} a_{1}(x) \varphi(t) d t+C_{1} a_{1}(x)+\int_{0}^{x} & a_{2}(x)(x-t) \varphi(t) d t \\
& \quad+C_{1} x a_{2}(x)+C_{0} a_{2}(x)=F(x)
\end{aligned}
$$

ษู
$\varphi(x)+\int_{0}^{x}\left[a_{1}(x)+a_{2}(x)(x-t)\right] \varphi(t) d t=F(x)-C_{1} a_{1}(x)-C_{1} x a_{2}(x)-C_{0} a_{2}(x)$

กnt $K(x, t)=-\left[a_{1}(x)+a_{2}(x)(x-t)\right]$
बิt丂 $f(x)=F(x)-C_{1} a_{1}(x)-C_{1} x a_{2}(x)-C_{0} a_{2}(x)$

$$
\begin{equation*}
\varphi(x)=\int_{0}^{x} K(x, t) \varphi(t) d t+f(x) \tag{1.19}
\end{equation*}
$$

$$
y^{\prime \prime}+x y^{\prime}+y=0
$$

 4

Tnt $\frac{d^{2} y}{d x^{2}}=\varphi(x)$
โสีเนตร : $\frac{d y}{d x}=\int_{0}^{x} \varphi(t) d t+y^{\prime}(0)=\int_{0}^{x} \varphi(t) d t$
बิิt

$$
y=\int_{0}^{x}(x-t) \varphi(t) d t+1
$$

$$
\begin{array}{ll}
& \varphi(x)+\int_{0}^{x} x \varphi(t) d t+\int_{0}^{x}(x-t) \varphi(t) d t+1=0 \\
\text { ษ } & \varphi(x)=-1-\int_{0}^{x}(2 x-t) \varphi(t) d t
\end{array}
$$

$$
y^{\prime \prime}+\left(1+x^{2}\right) y=\cos x
$$

ติเด $\varphi(x)=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}$ นชื่นตร :

$$
\frac{d y}{d x}=\int_{0}^{x} \varphi(t) d t+y^{\prime}(0)=\int_{0}^{x} \varphi(t) d t+2
$$

คิเ

$$
\begin{aligned}
y & =\int_{0}^{x}(x-t) \varphi(t) d t+y^{\prime}(0) x+y(0) \\
& =\int_{0}^{x}(x-t) \varphi(t) d t+2 x
\end{aligned}
$$

$$
\varphi(x)+\left(1+x^{2}\right) \int_{0}^{x}(x-t) \varphi(t) d t+2 x\left(1+x^{2}\right)=\cos x
$$

$$
\varphi(x)=\cos x-2 x\left(1+x^{2}\right)-\int_{0}^{x}\left(1+x^{2}\right)(x-t) \varphi(t) d t
$$

$$
\begin{equation*}
\varphi(x)=x+\int_{0}^{x} x t \varphi(t) d t \tag{1.23}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)=x\left(1+\int_{0}^{x} t \varphi(t) d t\right) \tag{1.24}
\end{equation*}
$$

ตาเง $y(x)=1+\int_{0}^{x} t \varphi(t) d t$
โศตทร:

$$
y^{\prime}(x)=x \varphi(x)
$$

ตาษสษีตาร (1.24) ริเท (1.25) ร่ใูิโ

$$
\varphi(x)=x y(x)
$$

เนึสร

$$
y^{\prime}(x)=x^{2} y(x)
$$

$$
\Leftrightarrow \quad \frac{y^{\prime}(x)}{y(x)}=x^{2}
$$

$$
\Leftrightarrow \quad \ln |y(x)|=\frac{x^{3}}{3}+k
$$

$$
\varphi(x)=x y(x)=x e^{\frac{x^{3}}{3}}
$$

$$
\begin{equation*}
\varphi(x)=2 \int_{0}^{x} \frac{2 t+1}{(2 x+1)^{2}} \varphi(t) d t+1 \tag{1.26}
\end{equation*}
$$

$$
\varphi(x)=\frac{2}{(2 x+1)^{2}} \int_{0}^{x}(2 t+1) \varphi(t) d t+1
$$

ติเง $u(x)=\int_{0}^{x}(2 t+1) \varphi(t) d t$
เรตรา : $\quad u^{\prime}(x)=(2 x+1) \varphi(x)$

เกี๗ร

$$
\begin{array}{ll}
& \varphi(x)=\frac{2}{(2 x+1)^{2}} u(x)+1 \\
& u^{\prime}(x)=(2 x+1)\left\{\frac{2}{(2 x+1)^{2}} u(x)+1\right\} \\
\Leftrightarrow \quad & \quad \frac{2}{2 x+1} u(x)+(2 x+1) \\
\Leftrightarrow \quad & u^{\prime}(x)-\frac{2}{2 x+1} u(x)=(2 x+1) \\
\Leftrightarrow \quad & \frac{1}{2 x+1} u^{\prime}(x)-\frac{2}{(2 x+1)^{2}} u(x)=1 \\
\Leftrightarrow \quad & \frac{d}{d x}\left(\frac{u(x)}{2 x+1}\right)=1
\end{array}
$$

มําดิโ $\frac{u(x)}{2 x+1}=x+C \quad$ (C น่าต่มูตเษ่ร)
जิऐ $u(x)=(2 x+1)(x+C) \quad$ १

$$
\begin{aligned}
\varphi(x) & =\frac{2}{(2 x+1)^{2}} u(x)+1 \\
& =\frac{2}{(2 x+1)^{2}} x(2 x+1)+1 \\
& =\frac{2 x}{2 x+1}+1=\frac{4 x+1}{2 x+1}
\end{aligned}
$$

(Résolvante de l'équation intégrale de Volterra)

$$
\begin{equation*}
\varphi(x)=f(x)+\lambda \int_{0}^{x} K(x, t) \varphi(t) d t \tag{1.29}
\end{equation*}
$$

 $0 \leq x \leq a 9$
况 λ :

$$
\begin{equation*}
\varphi(x)=\varphi_{0}(x)+\lambda \varphi_{1}(x)+\lambda^{2} \varphi_{2}(x)+\ldots . .+\lambda^{n} \varphi_{n}(x)+\ldots . \tag{1.30}
\end{equation*}
$$

$$
\begin{aligned}
\varphi_{0}(x) & +\lambda \varphi_{1}(x)+\lambda^{2} \varphi_{2}(x)+\ldots . .+\lambda^{n} \varphi_{n}(x)+\ldots . .= \\
& =f(x)+\lambda \int_{0}^{x} K(x, t)\left[\varphi_{0}(t)+\lambda \varphi_{1}(t)+\ldots . .+\lambda^{n} \varphi_{n}(t)+\ldots .\right] d t
\end{aligned}
$$

$$
=f(x)+\lambda \int_{0}^{x} K(x, t) \varphi_{0}(t) d t+\ldots \ldots .+\lambda^{n} \int_{0}^{x} K(x, t) \varphi_{n-1}(t) d t+\ldots .
$$

$$
\begin{align*}
& \varphi_{0}(x)=f(x) \\
& \varphi_{1}(x)=\int_{0}^{x} K(x, t) \varphi_{0}(t) d t=\int_{0}^{x} K(x, t) f(t) d t \\
& \varphi_{2}(x)=\int_{0}^{x} K(x, t) \varphi_{1}(t) d t \tag{1.31}\\
& \varphi_{2}(x)=\int_{0}^{x} K(x, t) \int_{0}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t_{1} d t
\end{align*}
$$

$$
\begin{aligned}
\varphi_{1}(x) & =\int_{0}^{x} K(x, t) f(t) d t \\
\varphi_{2}(x) & =\int_{0}^{x} K(x, t)\left[\int_{0}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t_{1}\right] d t \\
& =\int_{0}^{x} f\left(t_{1}\right) d t_{1} \int_{t_{1}}^{x} K(x, t) K\left(t, t_{1}\right) d t \\
& =\int_{0}^{x} K_{2}\left(x, t_{1}\right) f\left(t_{1}\right) d t_{1}
\end{aligned}
$$

ในแด $K_{2}\left(x, t_{1}\right)=\int_{t_{1}}^{x} K(x, t) K\left(t, t_{1}\right) d t$ y

$$
\begin{equation*}
\varphi_{n}(x)=\int_{0}^{x} K_{n}(x, t) f(t) d t \quad(n=1,2,3, \ldots) \tag{1.32}
\end{equation*}
$$

 กันณีง :

$$
\begin{align*}
& K_{1}(x, t)=K(x, t) \\
& \text { बิ̂t } \quad K_{n+1}(x, t)=\int_{t}^{x} K(x, z) K_{n}(z, t) d z \quad(n=1,2,3, \ldots .) \tag{1.33}
\end{align*}
$$

$$
\begin{aligned}
\varphi(x)= & f(x)+\sum_{v=1}^{\infty} \lambda^{\nu} \int_{0}^{x} K_{v}(x, t) f(t) d t \\
& =f(x)+\int_{0}^{x}\left[\sum_{v=1}^{\infty} \lambda^{\nu} K_{v}(x, t) f(t)\right] d t
\end{aligned}
$$

$$
\begin{equation*}
R(x, t ; \lambda)=\sum_{v=0}^{\infty} \lambda^{\nu} K_{v+1}(x, t) \tag{1.34}
\end{equation*}
$$

$$
R(x, t ; \lambda)=K(x, t)+\lambda \int_{t}^{x} K(x, s) R(s, t ; \lambda) d s
$$

 루ธสเรํ :

$$
\varphi(x)=f(x)+\lambda \int_{0}^{x} R(x, t ; \lambda) f(t) d t
$$

เคตาร $K_{1}(x, t)=K(x, t)=1$ ฯ
ตาษูบยรู่ (1.33) เศตรง :

$$
\begin{aligned}
& K_{2}(x, t)=\int_{t}^{x} K(x, z) K_{1}(z, t) d z=\int_{t}^{x} d z=x-t \\
& K_{3}(x, t)=\int_{t}^{x} K(x, z) K_{2}(z, t) d z=\int_{t}^{x}(1)(z-t) d z=\frac{(x-t)^{2}}{2!} \\
& K_{4}(x, t)=\int_{t}^{x}(1) \frac{(z-t)^{2}}{2} d z=\frac{(x-t)^{3}}{3!}
\end{aligned}
$$

$$
K_{n}(x, t)=\int_{t}^{x} 1 \cdot K_{n-1}(z, t) d z=\int_{t}^{x} \frac{(z-t)^{n-2}}{(n-2)!} d z=\frac{(x-t)^{n-1}}{(n-1)!}
$$

ตีจิสิษรัแฺ โสีเทตร :

$$
\begin{aligned}
R(x, t ; \lambda) & =\sum_{n=0}^{\infty} \lambda^{n} K_{n+1}(x, t) \\
& =\sum_{n=0}^{\infty} \frac{\lambda^{n}(x-t)^{n}}{n!}=e^{\lambda(x-t)}
\end{aligned}
$$

Axammprow

เตยาร $K_{1}(x, t)=K(x, t)=e^{x-t}$ คิเต
ตายููงยร (1.33) เธีเนทตร :

$$
\begin{aligned}
& K_{2}(x, t)=\int_{t}^{x} K(x, z) K_{1}(z, t) d z=\int_{t}^{x} e^{x-z} \cdot e^{z-t} d z=e^{x-t}(x-t) \\
& K_{3}(x, t)=\int_{t}^{x} K(x, z) K_{2}(z, t) d z=\int_{t}^{x} e^{x-z} e^{z-t}(z-t) d z=e^{x-t} \frac{(x-t)^{2}}{2!}
\end{aligned}
$$

$$
K_{4}(x, t)=\int_{t}^{x} K(x, z) K_{3}(z, t) d z=\int_{t}^{x} e^{x-z} e^{z-t} \frac{(z-t)^{2}}{2!} d z=e^{x-t} \frac{(x-t)^{3}}{3!}
$$

\qquad
$K_{n}(x, t)=\int_{t}^{x} K(x, z) K_{n-1}(z, t) d z=\int_{t}^{x} e^{x-z} e^{z-t} \frac{(z-t)^{n-2}}{(n-2)!} d z$

$$
=\frac{e^{x-t}}{(n-2)!} \int_{t}^{x}(z-t)^{n-2} d(z-t)=e^{x-t} \frac{(x-t)^{n-1}}{(n-1)!}
$$

$$
\begin{aligned}
R(x, t ; \lambda) & =\sum_{n=0}^{\infty} \lambda^{n} K_{n+1}(x, t) \\
& =\sum_{n=0}^{\infty} \frac{\lambda^{n} e^{x-t}(x-t)^{n}}{n!}=e^{x-t} \sum_{n=0}^{\infty} \frac{[\lambda(x-t)]^{n}}{n!} \\
& =e^{x-t} e^{\lambda(x-t)}=e^{(1+\lambda)(x-t)}
\end{aligned}
$$

$$
\begin{equation*}
\varphi(x)=x^{2}+\int_{0}^{x} e^{x-t} \varphi(t) d t \tag{*}
\end{equation*}
$$

ตษยสิวินินึ :

Axams frow

สบษีตร (*) ราธถงรเสร :

$$
\begin{equation*}
\varphi(x)=x^{2}+e^{x} \int_{0}^{x} e^{-t} \varphi(t) d t \tag{**}
\end{equation*}
$$

ตาเม $u(x)=\int_{0}^{x} e^{-t} \varphi(t) d t$

เกตตร : $\quad u^{\prime}(x)=e^{-x} \varphi(x)$

$$
\varphi(x)=x^{2}+e^{x} u(x)
$$

เกีซร

$$
\begin{aligned}
& u^{\prime}(x)=e^{-x}\left(x^{2}+e^{x} u(x)\right) \\
\Leftrightarrow & u^{\prime}(x)-u(x)=x^{2} e^{-x} \\
\Leftrightarrow & e^{-x} u^{\prime}-e^{-x} u=x^{2} e^{-2 x}
\end{aligned}
$$

शity

$$
\frac{d}{d x}\left(e^{-x} u\right)=x^{2} e^{-2 x}
$$

$$
\Leftrightarrow \quad e^{-x} u=\int x^{2} e^{-2 x} d x
$$

$$
\Leftrightarrow \quad e^{-x} u=-\frac{x^{2}}{2} e^{-2 x}-\frac{x}{2} e^{-2 x}-\frac{1}{4} e^{-2 x}+C \quad(C \text { น่าติตูรเง่ร })
$$

มit్

$$
u=u(x)=-\frac{x^{2}}{2} e^{-x}-\frac{x}{2} e^{-x}-\frac{1}{4} e^{-x}+C e^{x}
$$

$$
\begin{aligned}
\varphi(x) & =x^{2}+e^{x} u(x) \\
& =x^{2}+e^{x}\left(-\frac{x^{2}}{2} e^{-x}-\frac{x}{2} e^{-x}-\frac{1}{4} e^{-x}+\frac{1}{4} e^{x}\right) \\
& =\frac{x^{2}}{2}-\frac{x}{2}-\frac{1}{4}+\frac{e^{2 x}}{4}
\end{aligned}
$$

เธ์เรยาร : $f(x)=x^{2} ; \lambda=1$ ลิเด $\mathrm{K}(\mathrm{x}, \mathrm{t})=e^{x-t}$ ฯ

$$
R(x, t ; 1)=e^{(1+\lambda)(x-t)}=e^{(1+1)(x-t)}=e^{2(x-t)}
$$

$$
\begin{aligned}
& \varphi(x)=f(x)+\lambda \int_{0}^{x} R(x, t ; \lambda) f(t) d t \\
& =x^{2}+\int_{0}^{x} e^{2(x-t)} t^{2} d t \\
& =x^{2}+e^{2 x} \int_{0}^{x} t^{2} e^{-2 t} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{2}}{2}-\frac{x}{2}-\frac{1}{4}+\frac{e^{2 x}}{4}
\end{aligned}
$$

$$
\begin{equation*}
K(x, t)=a_{0}(x)+a_{1}(x)(x-t)+\ldots . .+\frac{a_{n-1}(x)}{(n-1)!}(x-t)^{n-1} \tag{1.36}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{n} g}{d x^{n}}-\lambda\left[a_{0}(x) \frac{d^{n-1} g}{d x^{n-1}}+a_{1}(x) \frac{d^{n-2} g}{d x^{n-2}}+\ldots .+a_{n-1}(x) g\right]=0 \tag{1.37}
\end{equation*}
$$

$$
\begin{equation*}
\left.\mathrm{g}\right|_{\mathrm{x}=\mathrm{t}}=\left.\frac{\mathrm{dg}}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{t}}=\ldots \ldots . .=\left.\frac{\mathrm{d}^{\mathrm{n}-2} \mathrm{~g}}{\mathrm{dx} \mathrm{x}^{\mathrm{n}-2}}\right|_{\mathrm{x}=\mathrm{t}}=0 \text { 刢 }\left.\frac{\mathrm{d}^{\mathrm{n}-1} \mathrm{~g}}{\mathrm{dx} \mathrm{x}^{\mathrm{n}-1}}\right|_{\mathrm{x}=\mathrm{t}}=1 \tag{1.38}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}(\mathrm{x}, \mathrm{t} ; \lambda)=\frac{1}{\lambda} \cdot \frac{\mathrm{~d}^{\mathrm{n}} \mathrm{~g}(\mathrm{x}, \mathrm{t} ; \lambda)}{\mathrm{dx}} \tag{1.39}
\end{equation*}
$$

$$
\begin{equation*}
K(x, t)=b_{0}(t)+b_{1}(t)(t-x)+\ldots \ldots+\frac{b_{n-1}(t)}{(n-1)!}(t-x)^{n-1} \tag{1.40}
\end{equation*}
$$

$$
\begin{equation*}
R(x, t ; \lambda)=-\frac{1}{\lambda} \cdot \frac{d^{\mathrm{n}} \mathrm{~g}(\mathrm{t}, \mathrm{x} ; \lambda)}{\mathrm{dt} \mathrm{t}^{\mathrm{n}}} \tag{1.41}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{n} g}{d t^{n}}+\lambda\left[b_{0}(t) \frac{d^{n-1} g}{d t^{n-1}}+b_{1}(t) \frac{d^{n-2} g}{d t^{n-2}}+\ldots .+b_{n-1}(t) g\right]=0 \tag{1.42}
\end{equation*}
$$

$$
\begin{gathered}
\varphi(\mathrm{x})=\mathrm{f}(\mathrm{x})+\int_{0}^{\mathrm{x}}(\mathrm{x}-\mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt} \\
\text { \&xamstuna }
\end{gathered}
$$

ถัษีตร (1.37) ยามุโ์เ่

$$
\frac{d^{2} g(x, t ; 1)}{d x^{2}}-g(x, t ; 1)=0
$$

วินด $g(x, t ; 1)=g(x, t)=C_{1}(t) e^{x}+C_{2}(t) e^{-x}$

$$
\left\{\begin{array}{l}
C_{1}(t) e^{t}+C_{2}(t) e^{-t}=0 \tag{1.43}\\
C_{1}(t) e^{t}-C_{2}(t) e^{-t}=1
\end{array}\right.
$$

$$
C_{1}(t)=\frac{1}{2} e^{-t}, \quad C_{2}(t)=-\frac{1}{2} e^{t}
$$

ตํใั

$$
\begin{aligned}
g(x, t ; l) & =g(x, t)=\frac{1}{2} e^{-t} e^{x}-\frac{1}{2} e^{t} e^{-x} \\
& =\frac{1}{2}\left(e^{x-t}-e^{-(x-t)}\right)=\operatorname{sh}(x-t)
\end{aligned}
$$

$$
\begin{aligned}
R(x, t ; 1) & =\frac{1}{1} \cdot \frac{d^{2} g(x, t ; 1)}{d x^{2}} \\
& =\frac{d^{2}[\operatorname{sh}(x-t)]}{d x^{2}}=\operatorname{sh}(x-t)
\end{aligned}
$$

$$
\varphi(x)=e^{x}+\int_{0}^{x}(x-t) \varphi(t) d t
$$

$$
R(x, t ; 1)=\operatorname{sh}(x-t)=\frac{1}{2}\left[e^{x-t}-e^{-(x-t)}\right]
$$

$$
\begin{aligned}
\varphi(x) & =e^{x}+\int_{0}^{x} R(x, t ; 1) e^{t} d t \\
& =e^{x}+\int_{0}^{x} \frac{e^{t}}{2}\left[e^{x-t}-e^{-(x-t)}\right] d t \\
& =e^{x}+\frac{1}{2} \int_{0}^{x}\left(e^{x}-e^{-x} \cdot e^{2 t}\right) d t \\
& =e^{x}+\left.\frac{1}{2}\left(e^{x} t-\frac{1}{2} e^{-x} e^{2 t}\right)\right|_{0} ^{x} \\
& =\frac{x}{2} e^{x}+\frac{3}{4} e^{x}+\frac{1}{4} e^{-x}
\end{aligned}
$$

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t \tag{1.44}
\end{equation*}
$$

 ธัเตร $x=1$ เสตาง :

$$
\begin{equation*}
\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1 \tag{1.45}
\end{equation*}
$$

$$
\begin{aligned}
u=e^{-t} & \Rightarrow d u=-e^{-t} \\
\text { sิtด } \quad d v=t^{x-1} d t & \Rightarrow v=\frac{t^{x}}{x}
\end{aligned}
$$

$$
\begin{align*}
\Gamma(x) & =\left.\frac{t^{x} e^{-t}}{x}\right|_{0} ^{\infty}+\frac{1}{x} \int_{0}^{\infty} e^{-t} t^{x} d t \\
& =0+\frac{1}{x} \int_{0}^{\infty} e^{-t} t^{x} d t \\
& =\frac{\Gamma(x+1)}{x} \tag{1.46}
\end{align*}
$$

$$
\begin{equation*}
\Gamma(x+1)=x \Gamma(x) \tag{1.47}
\end{equation*}
$$

$$
\Gamma(2)=\Gamma(1+1)=1 \cdot \Gamma(1)=1
$$

$$
\begin{aligned}
& \Gamma(3)=\Gamma(2+1)=2 \cdot \Gamma(2)=2=2! \\
& \Gamma(4)=\Gamma(3+1)=3 \cdot \Gamma(3)=6=3!
\end{aligned}
$$

$$
\begin{equation*}
\Gamma(n)=(n-1)! \tag{1.48}
\end{equation*}
$$

โฺ98 $I^{2}=I \times I=\left(\int_{0}^{\infty} e^{-x^{2}} d x\right)\left(\int_{0}^{\infty} e^{-y^{2}} d y\right)$

$$
=\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

शึ่ใู $x^{2}+y^{2}=r^{2}$ 解 $d x d y=J d r d \theta$
ใน ใน Jacobian $J=\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right|=r \quad$ ฯ

เทึแ

$$
\begin{aligned}
\mathrm{I}^{2} & =\int_{\mathrm{r}=0}^{+\infty} \int_{\theta=0}^{\frac{\pi}{2}} \mathrm{e}^{-\mathrm{r}^{2}} r d r d \theta \\
& =-\frac{1}{2} \int_{0}^{+\infty} e^{-r^{2}} d\left(-\mathrm{r}^{2}\right) \int_{0}^{\frac{\pi}{2}} d \theta \\
& =\left(-\left.\frac{\mathrm{e}^{-\mathrm{r}^{2}}}{2}\right|_{0} ^{+\infty}\right)\left(\left.\theta\right|_{0} ^{\frac{\pi}{2}}\right)=\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \mathrm{I}=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\frac{\sqrt{\pi}}{2} \tag{1.49}
\end{equation*}
$$

เชีเนตาเ $x=\sqrt{t} \Rightarrow x^{2}=t \quad(t \geq 0)$ जิt $d x=\frac{d t}{2 \sqrt{t}}$

$$
\int_{0}^{\infty} \mathrm{e}^{-\mathrm{t}} \frac{\mathrm{dt}}{2 \sqrt{\mathrm{t}}}=\frac{\sqrt{\pi}}{2}
$$

शiษึ

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} \mathrm{e}^{-t} \mathrm{t}^{\frac{1}{2}-1} d t=\sqrt{\pi} \tag{1.50}
\end{equation*}
$$

$$
\begin{aligned}
& \Gamma\left(\frac{3}{2}\right)=\Gamma\left(\frac{1}{2}+1\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2} \\
& \Gamma\left(\frac{5}{2}\right)=\Gamma\left(1+\frac{3}{2}\right)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{2} \cdot \frac{\sqrt{\pi}}{2}=\frac{1 \cdot 3 \cdot \sqrt{\pi}}{2^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\Gamma\left(\mathrm{n}+\frac{1}{2}\right)=\frac{1 \cdot 3 \cdot 5 \cdots(2 \mathrm{n}-1)}{2^{\mathrm{n}}} \sqrt{\pi} \tag{1.51}
\end{equation*}
$$

ตึฟูบษรู (1.46) เพึเนตาถูทต :

$$
\begin{aligned}
& \Gamma\left(\frac{1}{2}\right)=\frac{\Gamma\left(\frac{1}{2}+1\right)}{\frac{1}{2}}=\frac{\Gamma\left(\frac{3}{2}\right)}{\frac{1}{2}}=\frac{\frac{1}{2} \sqrt{\pi}}{\frac{1}{2}}=\sqrt{\pi} \\
& \Gamma\left(-\frac{1}{2}\right)=\frac{\Gamma\left(-\frac{1}{2}+1\right)}{-\frac{1}{2}}=\frac{\Gamma\left(\frac{1}{2}\right)}{-\frac{1}{2}}=\frac{\sqrt{\pi}}{-\frac{1}{2}}=-2 \sqrt{\pi} \\
& \Gamma\left(-\frac{3}{2}\right)=\frac{\Gamma\left(-\frac{3}{2}+1\right)}{-\frac{3}{2}}=\frac{4 \sqrt{\pi}}{3}
\end{aligned}
$$

$$
\Gamma\left(-\frac{5}{2}\right)=-\frac{8 \sqrt{\pi}}{15}
$$

 ถายูยูษร (1.46) ถยตาตูตร :

$$
\begin{aligned}
& \Gamma(0)=\lim _{x \rightarrow 0} \Gamma(x)=\lim _{x \rightarrow 0} \frac{\Gamma(x+1)}{x}=\infty \\
& \Gamma(-1)=\lim _{x \rightarrow-1} \Gamma(x)=\lim _{x \rightarrow-1} \frac{\Gamma(x+1)}{x}=\infty
\end{aligned}
$$

น్ููษธระ $\Gamma(0)=\Gamma(-1)=\cdots \cdot=\Gamma(-n)=\cdots=\infty$


```
>f:=int(t^(x-1)*exp (-t), t=0..infinity);
    f:=\Gamma(x)
```

$>\operatorname{plot}(f, x=-5 . .5,-5 . .5)$;

$$
\because \quad \text { Gamma Function }
$$

รูรని

$$
\begin{align*}
\Gamma(x) & =\int_{0}^{\infty} e^{-t} t^{x-1} d t=\int_{0}^{\infty} e^{-u^{2}}\left(u^{2}\right)^{x-1} 2 u d u \\
& =2 \int_{0}^{\infty} e^{-u^{2}} u^{2 x-1} d u=2 \int_{0}^{\infty} e^{-t^{2}} t^{2 x-1} d t \tag{1.53}
\end{align*}
$$

(1). $\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin \pi x}$
(2). $\Gamma(x) \Gamma\left(x+\frac{1}{2}\right)=2^{1-2 x} \pi^{\frac{1}{2}} \Gamma(2 x)$
(3). $\Gamma(x) \Gamma\left(x+\frac{1}{n}\right) \Gamma\left(x+\frac{2}{n}\right) \cdots \Gamma\left(x+\frac{n-1}{n}\right)=$

$$
\begin{equation*}
=(2 \pi)^{\frac{n-1}{2}} n^{\frac{1}{2}-n x} \Gamma(n x) \tag{1.56}
\end{equation*}
$$

ติย

ธั่ากร $0<\mathrm{m}<1$ โธีเดตร:

$$
\Gamma(m)=2 \int_{0}^{\infty} e^{-t^{2}} t^{2 m-1} d t=2 \int_{0}^{\infty} x^{2 m-1} e^{-x^{2}} d x
$$

बิเด $\quad \Gamma(1-m)=2 \int_{0}^{\infty} e^{-t^{2}} t^{2(1-m)-1} d t=2 \int_{0}^{\infty} y^{1-2 m} e^{-y^{2}} d y$
ตํใฺ]

$$
\begin{equation*}
\Gamma(m) \Gamma(1-m)=4 \int_{0}^{\infty} \int_{0}^{\infty} x^{2 m-1} y^{1-2 m} e^{-\left(x^{2}+y^{2}\right)} d x d y \tag{*}
\end{equation*}
$$

 ถฺฺબา:

$$
\Gamma(m) \Gamma(1-m)=4 \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{\infty}(r \cos \theta)^{2 m-1}(r \sin \theta)^{1-2 m} e^{-r^{2}} r d r d \theta
$$

$$
\begin{aligned}
& =4\left(-\frac{1}{2}\right) \int_{r=0}^{\infty} e^{-r^{2}} d\left(-r^{2}\right) \int_{\theta=0}^{\frac{\pi}{2}}(\tan \theta)^{1-2 m} d \theta \\
& =\left(-\left.2 e^{-r^{2}}\right|_{0} ^{\infty} \int_{\theta=0}^{\frac{\pi}{2}}(\tan \theta)^{1-2 m} d \theta\right. \\
& =2 \int_{0}^{\frac{\pi}{2}}\left(\tan ^{2} \theta\right)^{\frac{1-2 m}{2}} d \theta
\end{aligned}
$$

กาเร $x=\tan ^{2} \theta$ ञixi $\tan \theta=\sqrt{x}$ ติt $d x=2 \tan \theta \frac{d \theta}{\cos ^{2} \theta}=2 \sqrt{x}(1+x) d \theta$ ใู้ำรโร $\mathrm{d} \theta=\frac{\mathrm{dx}}{2 \sqrt{\mathrm{x}}(1+\mathrm{x})}$ เกียส

$$
\begin{aligned}
\Gamma(m) \Gamma(1-m) & =2 \int_{0}^{+\infty} x^{\frac{1-2 m}{2}} \frac{d x}{2 \sqrt{x}(1+x)} \\
& =\int_{0}^{+\infty} \frac{d x}{x^{m}(1+x)} \\
& =\int_{0}^{+\infty} \frac{x^{p-1} d x}{1+x} \quad(\text { שึr } m=1-p \Leftrightarrow p=1-m ; 0<p<1) \\
& =\frac{\pi}{\sin p \pi}=\frac{\pi}{\sin (1-m) \pi}=\frac{\pi}{\sin m \pi} \text { ติศ }
\end{aligned}
$$

(ถูรฺโ $\int_{0}^{+\infty} \frac{x^{p-1} d x}{1+x}=\frac{\pi}{\sin \pi p}$)
 ในาสบะ్ูดทนใ 9

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left\{\left(1+\frac{z}{n}\right) e^{-\frac{z}{n}}\right\} \tag{1.57}
\end{equation*}
$$

วนตร $\gamma=\lim _{\mathrm{m} \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots .+\frac{1}{\mathrm{~m}}-\ln \mathrm{m}\right)=0.5772157 \ldots$

$$
\begin{equation*}
\Gamma(z)=\frac{1}{z} \prod_{n=1}^{\infty}\left\{\left(1+\frac{1}{n}\right)^{z}\left(1+\frac{z}{n}\right)^{-1}\right\} \tag{1.58}
\end{equation*}
$$

 โฺృ TituTs :

$$
\begin{equation*}
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x \tag{1.59}
\end{equation*}
$$

วัแด $\operatorname{Re}(\mathrm{p})>0$ มิเท $\operatorname{Re}(\mathrm{q})>0$ ฯ

$$
\begin{equation*}
B(p, q)=\int_{0}^{\infty} \frac{y^{p-1}}{(1+y)^{p+q}} d y \tag{1.60}
\end{equation*}
$$

 โัเรยรีตึร :

$$
\begin{equation*}
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} \tag{1.61}
\end{equation*}
$$

เศตร:

$$
\begin{aligned}
I_{1} & =\int_{0}^{1} a^{2} t \sqrt{a^{2}-a^{2} t} \cdot \frac{a d t}{2 \sqrt{t}} \\
& =\frac{a^{4}}{2} \int_{0}^{1} t^{\frac{1}{2}}(1-t)^{\frac{1}{2}} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathrm{a}^{4}}{2} B\left(\frac{3}{2}, \frac{3}{2}\right)=\frac{\mathrm{a}^{4} \Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{3}{2}\right)}{2 \Gamma\left(\frac{3}{2}+\frac{3}{2}\right)} \\
& =\frac{\mathrm{a}^{4} \frac{\sqrt{\pi}}{2} \times \frac{\sqrt{\pi}}{2}}{2(2!)}=\frac{\pi \mathrm{a}^{4}}{16}
\end{aligned}
$$

ตาไ $t=x^{5}$ gity $x=\sqrt[5]{t}=t^{\frac{1}{5}}$ gิt $d x=\frac{1}{5} t^{\frac{1}{5}-1} d t \quad 4$ เชีเมตร :

$$
\begin{aligned}
\mathrm{I}_{2} & =\frac{1}{5} \int_{0}^{+\infty} \frac{t^{\frac{1}{5}-1} d t}{(1+t)^{\frac{4}{5}+\frac{1}{5}}}=\frac{1}{5} \mathrm{~B}\left(\frac{1}{5}, \frac{4}{5}\right) \\
& =\frac{\Gamma\left(\frac{1}{5}\right) \Gamma\left(\frac{4}{5}\right)}{5 \Gamma\left(\frac{1}{5}+\frac{4}{5}\right)}=\frac{1}{5} \Gamma\left(\frac{1}{5}\right) \Gamma\left(1-\frac{1}{5}\right) \quad(\text { Ifnn } \Gamma(1)=1) \\
& =\frac{\pi}{5 \sin \frac{\pi}{5}}
\end{aligned}
$$

(Equation Intégrale d'Abel et sa Généralisation)

$$
\begin{equation*}
\int_{0}^{x} \frac{\varphi(t)}{\sqrt{x-t}} d t=f(x) \tag{1.62}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{x} \frac{\varphi(t)}{(x-t)^{\alpha}} d t=f(x) \tag{1.63}
\end{equation*}
$$

 เถึษษร์ $[0, x]$:

$$
\int_{0}^{x} \frac{d s}{(x-s)^{1-\alpha}} \int_{0}^{s} \frac{\varphi(t)}{(s-t)^{\alpha}} d t=\int_{0}^{x} \frac{f(s)}{(x-s)^{1-\alpha}} d s
$$

$$
\begin{equation*}
\int_{0}^{x} \varphi(t) d t \int_{t}^{x} \frac{d s}{(x-s)^{1-\alpha}(s-t)^{\alpha}}=F(x) \tag{1.64}
\end{equation*}
$$

โัญด $F(x)=\int_{0}^{x} \frac{f(s)}{(x-s)^{1-\alpha}} d s \quad$ ฯ

$$
\begin{aligned}
\int_{t}^{x} \frac{d s}{(x-s)^{1-\alpha}(s-t)^{\alpha}} & =\int_{0}^{1} \frac{(x-t) d y}{(1-y)^{1-\alpha}(x-t)^{1-\alpha} y^{\alpha}(x-t)^{\alpha}} \\
& =\int_{0}^{1} \frac{d y}{y^{\alpha}(1-y)^{1-\alpha}} \\
& =\int_{0}^{1} y^{(1-\alpha)-1}(1-y)^{\alpha-1} d y \\
& =B(1-\alpha, \alpha)=\frac{\Gamma(1-\alpha) \Gamma(\alpha)}{\Gamma(1)}
\end{aligned}
$$

$$
=\frac{\pi}{\sin \pi \alpha} \quad(\Gamma(1)=1)
$$

ตึสษษีการ (1.64) เพีเตตร :

$$
\int_{0}^{x} \varphi(t) d t=\frac{\sin \alpha \pi}{\pi} F(x)
$$

รำยู $\quad \varphi(x)=\frac{\sin \alpha \pi}{\pi} F^{\prime}(x)$

$$
\begin{equation*}
=\frac{\sin \alpha \pi}{\pi} \frac{d}{d x}\left(\int_{0}^{x} \frac{f(s)}{(x-s)^{1-\alpha}} d s\right) \tag{1.65}
\end{equation*}
$$

$$
u=f(s) \quad \Rightarrow \quad d u=f^{\prime}(s) d s
$$

จิ้ $\mathrm{dv}=\frac{\mathrm{ds}}{(\mathrm{x}-\mathrm{s})^{1-\alpha}} \Rightarrow \mathrm{v}=-\frac{(\mathrm{x}-\mathrm{s})^{\alpha}}{\alpha}$
ใูธธร

$$
\begin{aligned}
\int_{0}^{x} \frac{f(s)}{(x-s)^{1-\alpha}} d s & =-\left.\frac{(x-s)^{\alpha}}{\alpha} f(s)\right|_{0} ^{\alpha}+\frac{1}{\alpha} \int_{0}^{x}(x-s)^{\alpha} f^{\prime}(s) d s \\
& =\frac{x^{\alpha}}{\alpha} f(0)+\frac{1}{\alpha} \int_{0}^{x}(x-s)^{\alpha} f^{\prime}(s) d s
\end{aligned}
$$

बी़ $\frac{d}{d x}\left(\int_{0}^{x} \frac{f(s)}{(x-s)^{1-\alpha}} d s\right)=\frac{\alpha x^{\alpha-1}}{\alpha} f(0)+\frac{\alpha}{\alpha} \int_{0}^{x}(x-s)^{\alpha-1} f^{\prime}(s) d s$

$$
=\frac{f(0)}{x^{1-\alpha}}+\int_{0}^{x} \frac{f^{\prime}(s)}{(x-s)^{1-\alpha}} d s
$$

$$
\begin{equation*}
\varphi(x)=\frac{\sin \alpha \pi}{\pi}\left[\frac{f(0)}{x^{1-\alpha}}+\int_{0}^{x} \frac{f^{\prime}(\mathrm{s})}{(\mathrm{x}-\mathrm{s})^{1-\alpha}} \mathrm{ds}\right] \tag{1.66}
\end{equation*}
$$

$$
\int_{0}^{x} \frac{\varphi(t) d x}{(x-t)^{\alpha}}=x^{n} \quad(0<\alpha<1) \quad y
$$

Atamp prow

เธึนยาร $f(x)=x^{n}$ รึ่ชิ $f^{\prime}(x)=n x^{n-1}$ คิเ $f(0)=0$ ฯ
เตที่ :

$$
\int_{0}^{x} \frac{f^{\prime}(s)}{(x-s)^{1-\alpha}} d s=\int_{0}^{x} \frac{n s^{n-1}}{(x-s)^{1-\alpha}} d s
$$

ตา่ด่ $s=x y \Rightarrow d s=x a y$ เบียส

$$
\begin{aligned}
\int_{0}^{x} \frac{f^{\prime}(s)}{(x-s)^{1-\alpha}} d s & =\int_{0}^{x} \frac{n(x y)^{n-1}}{(x-x y)^{1-\alpha}} x d y \\
& =\frac{n x^{n}}{x^{1-\alpha}} \int_{0}^{1} \frac{y^{n-1} d y}{(1-y)^{1-\alpha}} \\
& =n x^{n+\alpha-1} \int_{0}^{1} y^{n-1}(1-y)^{\alpha-1} d y \\
& =n x^{n+\alpha-1} B(n, \alpha) \\
& =n x^{n+\alpha-1} \frac{\Gamma(n) \Gamma(\alpha)}{\Gamma(n+\alpha)}
\end{aligned}
$$

$$
\begin{aligned}
\varphi(x) & =\frac{\sin \alpha \pi}{\pi}\left[\frac{0}{x^{1-\alpha}}+n x^{n+\alpha-1} \frac{\Gamma(n) \Gamma(\alpha)}{\Gamma(n+\alpha)}\right] \\
& =\frac{n x^{n+\alpha-1} \sin \alpha \pi \Gamma(n) \Gamma(\alpha)}{\pi \Gamma(n+\alpha)}
\end{aligned}
$$

ชิ์ด $n \Gamma(n)=\Gamma(n+1)$ 领 $\Gamma(\alpha) \Gamma(1-\alpha)=\frac{\pi}{\sin \pi \alpha} \Leftrightarrow \frac{\sin \pi \alpha \Gamma(\alpha)}{\pi}=\frac{1}{\Gamma(1-\alpha)}$

ํํㄴโรร $\varphi(x)=\frac{\Gamma(n+1)}{\Gamma(1-\alpha)} \cdot \frac{x^{n+\alpha-1}}{\Gamma(n+\alpha)}$

$$
\begin{equation*}
\int_{0}^{x}(x-t)^{\beta} \varphi(t) d t=x^{\lambda} \tag{1.67}
\end{equation*}
$$

 gเชำนึ 9

$$
\begin{equation*}
\int_{0}^{z}(z-x)^{\mu}\left(\int_{0}^{x}(x-t)^{\beta} \varphi(t) d t\right) d x=\int_{0}^{z} x^{\lambda}(z-x)^{\mu} d x \tag{1.68}
\end{equation*}
$$

$$
\begin{align*}
\int_{0}^{z} x^{\lambda}(z-x)^{\mu} d x & =z^{\lambda+\mu+1} \int_{0}^{1} \rho^{\lambda}(1-\rho)^{\mu} d \rho \\
& =z^{\lambda+\mu+1} B(\lambda+1, \mu+1) \\
& =z^{\lambda+\mu+1} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\lambda+\mu+2)} \tag{1.69}
\end{align*}
$$

ในสธ $\lambda+\mu+1>\lambda \geq 0$ 9

$$
\begin{align*}
\int_{0}^{z}(z-x)^{\mu}\left(\int_{0}^{x}(x-t)^{\beta} \varphi(t) d t\right) d x & =\int_{0}^{z}\left(\int_{0}^{x}(z-x)^{\mu}(x-t)^{\beta} \varphi(t) d t\right) d x \\
& =\int_{0}^{z}\left(\int_{t}^{z}(z-x)^{\mu}(x-t)^{\beta} d x\right) \varphi(t) d t \tag{1.70}
\end{align*}
$$

รูษฐ๊ ต

$$
\begin{align*}
\int_{t}^{z}(z-x)^{\mu}(x-t)^{\beta} d x & =(z-t)^{\mu+\beta+1} \int_{0}^{1} \rho^{\beta}(1-\rho)^{\mu} d \rho \\
& =(z-t)^{\mu+\beta+1} B(\beta+1, \mu+1) \\
& =\frac{\Gamma(\beta+1) \Gamma(\mu+1)}{\Gamma(\beta+\mu+2)}(z-t)^{\mu+\beta+1} \tag{1.71}
\end{align*}
$$

$$
\begin{align*}
& \frac{\Gamma(\beta+1) \Gamma(\mu+1)}{\Gamma(\beta+\mu+2)} \int_{0}^{z}(z-t)^{\mu+\beta+1} \varphi(t) d t=z^{\lambda+\mu+1} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\lambda+\mu+2)} \\
& \text { ษ } \quad \frac{\Gamma(\beta+1)}{\Gamma(\beta+\mu+2)} \int_{0}^{z}(z-t)^{\mu+\beta+1} \varphi(t) d t=\frac{\Gamma(\lambda+1)}{\Gamma(\lambda+\mu+2)} z^{\lambda+\mu+1} \tag{1.72}
\end{align*}
$$

 ราตตสรวเสรวนา:

$$
\begin{array}{ll}
& \frac{\Gamma(\beta+1)}{\Gamma(n+1)} \int_{0}^{z}(z-t)^{n} \varphi(t) d t=\frac{\Gamma(\lambda+1)}{\Gamma(\lambda+n-\beta+1)} z^{\lambda+n-\beta} \\
\text { ษ } \quad \int_{0}^{z} \frac{(z-t)^{n}}{n!} \varphi(t) d t=\frac{\Gamma(\lambda+1)}{\Gamma(\beta+1) \Gamma(\lambda+n-\beta+1)} z^{\lambda+n-\beta} \tag{1.73}
\end{array}
$$

$$
\varphi(z)=\frac{\Gamma(\lambda+1) \cdot(\lambda+n-\beta)(\lambda+n-\beta-1) \cdots(\lambda-\beta)}{\Gamma(\beta+1) \Gamma(\lambda+n-\beta+1)} z^{\lambda-\beta-1}
$$

เบี $\lambda-\beta+k \neq 0(k=0,1,2, \ldots, n)$ โราะ

$$
\begin{aligned}
\Gamma(\lambda+n-\beta+1) & =(\lambda+n-\beta) \Gamma(\lambda+n-\beta) \\
& =(\lambda+n-\beta)(\lambda+n-\beta-1) \cdots(\lambda-\beta) \Gamma(\lambda-\beta)
\end{aligned}
$$

$$
\begin{equation*}
\varphi(z)=\frac{\Gamma(\lambda+1)}{\Gamma(\beta+1) \Gamma(\lambda-\beta)} z^{\lambda-\beta-1} \tag{1.74}
\end{equation*}
$$

สษีตารอาเดเสียาร $\beta=1$ จิท $\lambda=2$
ที่ยู $\lambda-\beta+k=1+k \neq 0$ โุธ่ $k=0,1,2, \ldots, n$ ฯ

$$
\begin{aligned}
\varphi(\mathrm{x}) & =\frac{\Gamma(2+1)}{\Gamma(1+1) \Gamma(2-1)} x^{2-1-1} \\
& =\frac{\Gamma(3)}{\Gamma(2) \Gamma(1)}=2
\end{aligned}
$$

$$
\begin{equation*}
\int_{0}^{x}(x-t)^{\frac{1}{3}} \varphi(t) d t=x^{\frac{4}{3}}-x^{2} \tag{*}
\end{equation*}
$$

\&่zamplitno

$$
\begin{equation*}
\int_{0}^{x}(x-t)^{\frac{1}{3}} \varphi(t) d t=x^{\frac{4}{3}} \tag{**}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{x}(x-t)^{\frac{1}{3}} \varphi(t) d t=-x^{2} \tag{***}
\end{equation*}
$$

$$
\begin{aligned}
\varphi_{1}(x) & =\frac{\Gamma\left(\frac{4}{3}+1\right)}{\Gamma\left(\frac{1}{3}+1\right) \Gamma\left(\frac{4}{3}-\frac{1}{3}\right)} x^{\frac{4}{3}-\frac{1}{3}-1} \\
& =\frac{\frac{4}{3} \Gamma\left(\frac{4}{3}\right)}{\Gamma\left(\frac{4}{3}\right) \Gamma(1)} x^{0}=\frac{4}{3}
\end{aligned}
$$

ธ ธัโกาะสัษึการ (***) ตาร $\beta=\frac{1}{3}$ ติเน $\lambda=2$
ต๋į $\lambda-\beta+k \neq 0$ โุธ่ $k=0,1,2, \ldots, n$ ฯ

$$
\begin{aligned}
\varphi_{2}(x) & =-\frac{\Gamma(2+1)}{\Gamma\left(\frac{1}{3}+1\right) \Gamma\left(2-\frac{1}{3}\right)} x^{2-\frac{1}{3}-1} \\
& =\frac{-2}{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{5}{3}\right)} x^{\frac{2}{3}}
\end{aligned}
$$

$$
\varphi(x)=\varphi_{1}(x)+\varphi_{2}(x)=\frac{4}{3}-\frac{2}{\Gamma\left(\frac{4}{3}\right) \Gamma\left(\frac{5}{3}\right)} x^{\frac{2}{3}}
$$

$1.1 \varphi(x)=\frac{x}{\left(1+x^{2}\right)^{5 / 2}} ; \varphi(x)=\frac{3 x+2 x^{3}}{3\left(1+x^{2}\right)^{2}}-\int_{0}^{x} \frac{3 x+2 x^{3}-t}{\left(1+x^{2}\right)^{2}} \varphi(t) d t$
$1.2 \varphi(x)=e^{x}\left(\operatorname{cose}^{x}-e^{x} \sin e^{x}\right) ;$
$\varphi(x)=\left(1-x e^{2 x}\right) \cos 1-e^{2 x} \sin 1+\int_{0}^{x}\left[1-(x-t) e^{2 x}\right] \varphi(t) d t$
$2.3 \varphi(x)=x e^{x} ; \varphi(x)=e^{x} \sin x+2 \int_{0}^{x} \cos (x-t) \varphi(t) d t$
$1.4 \varphi(x)=x-\frac{x^{3}}{6} ; \varphi(x)=x-\int_{0}^{x} \operatorname{sh}(x-t) \varphi(t) d t$
$1.5 \quad \varphi(x)=3 ; \quad x^{3}=\int_{0}^{x}(x-t)^{2} \varphi(t) d t$
$1.6 \varphi(x)=\frac{1}{2} ; \int_{0}^{x} \frac{\varphi(t)}{\sqrt{x-t}} d t=\sqrt{x}$
$1.7 \varphi(x)=\frac{1}{\pi \sqrt{x}} ; \int_{0}^{x} \frac{\varphi(t)}{\sqrt{x-t}} d t=1$

$1.8 \quad y^{\prime \prime}+y=0 ; \quad y(0)=0, \quad y^{\prime}(0)=1$
$1.9 \quad y^{\prime}-y=0 ; \quad y(0)=1$
$1.10 y^{\prime \prime}+y=\cos x ; y(0)=y^{\prime}(0)=0$
$1.11 y^{\prime \prime}-5 y^{\prime}+6 y=0 ; \quad y(0)=0, \quad y^{\prime}(0)=1$
$1.12 y^{\prime \prime}+y=\cos x ; \quad y(0)=0, \quad y^{\prime}(0)=1$
$1.13 y^{\prime \prime}-y^{\prime} \sin x+e^{x} y=x ; \quad y(0)=1, \quad y^{\prime}(0)=-1$
$1.14 y^{\prime \prime}+\left(1+x^{2}\right) y=\cos x ; \quad y(0)=0, \quad y^{\prime}(0)=2$
$1.15 y^{\prime \prime \prime}+x y^{\prime \prime}+\left(x^{2}-x\right) y=x e^{x}+1 ; \quad y(0)=y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=0$
$1.16 \quad y^{\prime \prime \prime}-2 x y=0 ; \quad y(0)=\frac{1}{2}, \quad y^{\prime}(0)=y^{\prime \prime}(0)=1$

$1.18 \varphi(x)=x-\int_{0}^{x} e^{x-t} \varphi(t) d t$
$1.19 \int_{0}^{x} e^{x+t} \varphi(t) d t=x$
$1.20 \quad \int_{0}^{x} e^{x-t} \varphi(t) d t=x$
$1.21 \varphi(x)=2 \int_{0}^{x} \frac{2 t+1}{(2 x+1)^{2}} \varphi(t) d t+1$
$1.22 \varphi(x)=\int_{0}^{x} \varphi(t) d t+e^{x}$

$1.23 \quad K(x, t)=x-t$
$1.24 \quad K(x, t)=e^{x-t}$
$1.25 \quad K(x, t)=e^{x^{2}-t^{2}}$
$1.26 \quad K(x, t)=\frac{1+x^{2}}{1+t^{2}}$
$1.27 K(x, t)=\frac{2+\cos x}{2+\cos t}$
$1.28 \quad K(x, t)=\frac{\operatorname{ch} x}{\operatorname{ch} t}$
$1.29 \quad K(x, t)=a^{x-t} \quad(a>0)$

$1.30 K(x, t)=2-(x-t)$
$1.31 \quad K(x, t)=-2+3(x-t)$
$1.32 \quad K(x, t)=2 x$
$1.33 \quad K(x, t)=-\frac{4 x-2}{2 x+1}+\frac{8(x-t)}{2 x+1}$

$$
\varphi(x)=f(x)+\int_{0}^{x} K(x-t) \varphi(t) d t \quad(\lambda=1) \quad(*)
$$

$1.35 \varphi(x)=e^{x}+\int_{0}^{x} e^{x-t} \varphi(t) d t$
$1.36 \varphi(x)=\sin x+2 \int_{0}^{x} e^{x-t} \varphi(t) d t$
$1.37 \varphi(x)=x 3^{x}-\int_{0}^{x} 3^{x-t} \varphi(t) d t$
$1.38 \varphi(x)=e^{x} \sin x+\int_{0}^{x} \frac{2+\cos x}{2+\cos t} \varphi(t) d t$
$1.39 \varphi(x)=1-2 x-\int_{0}^{x} e^{x^{2}-t^{2}} \varphi(t) d t$
$1.40 \varphi(x)=e^{x^{2}+2 x}+2 \int_{0}^{x} e^{x^{2}-t^{2}} \varphi(t) d t$
$1.41 \varphi(x)=1+x^{2}+\int_{0}^{x} \frac{1+x^{2}}{1+t^{2}} \varphi(t) d t$

1.45 โน่ากู่ตฺ $\frac{\Gamma^{\prime}(1)}{\Gamma(1)}-\frac{\Gamma^{\prime}\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)}=2 \ln 2$ ฯ

1.47 โยู่าฑูไษ $B(p, q)=B(q, p)$ q

1.49 ษยาตู่งา $B(p+1, q)=\frac{p}{q} B(p, q+1)$ ฯ
1.50 บยุกําตู่า $\int_{-1}^{1}(1+x)^{p-1}(1-x)^{q-1} d x=2^{p+q-1} B(p, q)$ q
1.51 ตณกรารรํานโโธธาถร $I=\int_{0}^{\pi / 2} \cos ^{m-1} x \sin ^{n-1} x d x \quad(\operatorname{Re} m>0, \operatorname{Re} n>0)$ ч

$1.53 \int_{0}^{x} \frac{\varphi(t)}{(x-t)^{\alpha}} d t=x^{n} \quad(0<\alpha<1)$
$1.54 \int_{0}^{x} \frac{\varphi(t)}{\sqrt{x-t}} d t=\sin x$
$1.55 \int_{0}^{x} \frac{\varphi(t)}{\sqrt{x-t}} d t=e^{x}$
$1.56 \int_{0}^{x} \frac{\varphi(t)}{\sqrt{x-t}} d t=\sqrt{x}$

$$
\iint_{D} \frac{\varphi(x, y) d x d y}{\sqrt{\left(y_{0}-y\right)^{2}-\left(x_{0}-x\right)^{2}}}=f\left(x_{0}, y_{0}\right)
$$

$1.58 \quad \int_{0}^{x}(x-t)^{\frac{1}{3}} \varphi(t) d t=x^{\frac{4}{3}}-x^{2}$
$1.59 \int_{0}^{x}(x-t)^{\frac{1}{2}} \varphi(t) d t=\pi x$
$1.60 \int_{0}^{x}(x-t)^{\frac{1}{4}} \varphi(t) d t=x+x^{2}$
$1.61 \int_{0}^{x}(x-t)^{2} \varphi(t) d t=x^{3}$
$1.62 \frac{1}{2} \int_{0}^{x}(x-t)^{2} \varphi(t) d t=\cos x-1+\frac{x^{2}}{2}$

- $\langle\diamond \leftrightarrow$

とตำมี

(Équations Intégrales de Fredholm)

$$
\begin{equation*}
\varphi(x)-\lambda \int_{a}^{b} K(x, t) \varphi(t) d t=f(x) \tag{2.1}
\end{equation*}
$$

$$
\int_{a}^{b} \int_{a}^{b}|K(x, t)|^{2} d x d t
$$

กัดกสส่ทุ บ

$$
\begin{equation*}
\varphi(x)-\lambda \int_{a}^{b} K(x, t) \varphi(t) d t=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{a}^{b} K(x, t) \varphi(t) d t=f(x) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(\mathrm{x})-\frac{\pi^{2}}{4} \int_{0}^{1} \mathrm{~K}(\mathrm{x}, \mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}=\frac{\mathrm{x}}{2} \tag{2.4}
\end{equation*}
$$

$$
K(x, t)=\left\{\begin{array}{lll}
\frac{x(2-t)}{2} & \text { ชี } & 0 \leq x \leq t \\
\frac{t(2-x)}{2} & \text { เย่ } t \leq x \leq 1
\end{array}\right.
$$

ธสีนทตร :

$$
\begin{aligned}
\varphi(x)-\frac{\pi^{2}}{4} \int_{0}^{1} K(x, t) \varphi(t) d t & =\varphi(x)-\frac{\pi^{2}}{4}\left\{\int_{0}^{x} K(x, t) \varphi(t) d t+\int_{x}^{1} K(x, t) \varphi(t) d t\right\} \\
& =\varphi(x)-\frac{\pi^{2}}{4}\left\{\int_{0}^{x} \frac{t(2-x)}{2} \varphi(t) d t+\int_{x}^{1} \frac{x(2-t)}{2} \varphi(t) d t\right\} \\
= & \sin \frac{\pi x}{2}-\frac{\pi^{2}}{4}\left\{\frac{2-x}{2} \int_{0}^{x} t \sin \frac{\pi t}{2} d t+\frac{x}{2} \int_{x}^{1}(2-t) \sin \frac{\pi t}{2} d t\right\}
\end{aligned}
$$

$=\sin \frac{\pi x}{2}-\frac{\pi^{2}}{4}\left\{\left.(2-x)\left(-\frac{t}{\pi} \cos \frac{\pi t}{2}+\frac{2}{\pi^{2}} \sin \frac{\pi t}{2}\right)\right|_{t=0} ^{t=x}+\left.x\left(-\frac{2-t}{\pi} \cos \frac{\pi t}{2}-\frac{2}{\pi^{2}} \sin \frac{\pi t}{2}\right)\right|_{t=x} ^{t=1}\right\}$
$=\frac{x}{2}$ ติศ

$$
\begin{equation*}
\varphi(x)-4 \int_{0}^{+\infty} \mathrm{e}^{-(x+t)} \varphi(t) d t=(x-1) e^{-x} \tag{2.5}
\end{equation*}
$$

Axamation

$$
\begin{align*}
\varphi(x)-4 \int_{0}^{+\infty} e^{-(x+t)} \varphi(t) d t & =x e^{-x}-4 \int_{0}^{+\infty} e^{-(x+t)} t e^{-t} d t \\
& =x e^{-x}-4 e^{-x} \int_{0}^{+\infty} t e^{-2 t} d t \tag{*}
\end{align*}
$$

รพีเแสรร

$$
\mathbf{u}=\mathfrak{t} \quad \Rightarrow \quad d \mathbf{u}=\mathrm{dt}
$$

大亏⿸⿻一丿口⿰亻⿱丶⿻工二口 $\mathrm{dv}=e^{-2 t} d t \Rightarrow \mathrm{v}=-\frac{1}{2} e^{-2 t}$
siţ］ $\int_{0}^{+\infty} t e^{-2 t} d t=-\left.\frac{t}{2} e^{-2 t}\right|_{0} ^{+\infty}+\frac{1}{2} \int_{0}^{+\infty} e^{-2 t} d t$

$$
\begin{aligned}
& =0+\left.\frac{1}{2}\left(-\frac{e^{-2 t}}{2}\right)\right|_{0} ^{+\infty} \\
& =-\frac{1}{4}(0-1)=\frac{1}{4}
\end{aligned}
$$

ตึสสยีตาร（＊）เสีเดตร：

$$
\varphi(x)-4 \int_{0}^{+\infty} e^{-(x+t)} \varphi(t) d t=x e^{-x}-4 e^{-x}\left(\frac{1}{4}\right)=(x-1) e^{-x} \text { ติส }
$$

$$
\varphi(x)-\lambda \int_{a}^{b} K(x, t) \varphi(t) d t=f(x)
$$

ติกีกภส่เนานธูบบหร

$$
\begin{equation*}
\varphi(x)=f(x)+\lambda \int_{a}^{b} R(x, t ; \lambda) f(t) d t \tag{2.6}
\end{equation*}
$$

 สษตาต

$$
\begin{equation*}
R(x, t ; \lambda)=\frac{D(x, t ; \lambda)}{D(\lambda)} \tag{2.7}
\end{equation*}
$$

 λ :

$$
\begin{align*}
& D(x, t ; \lambda)=K(x, t)+\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n!} B_{n}(x, t) \lambda^{n} \tag{2.8}\\
& D(\lambda)=1+\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n!} C_{n} \lambda^{n} \tag{2.9}
\end{align*}
$$

$$
B_{n}(x, t)=\int_{a}^{b} \ldots \int_{n}^{b}\left|\begin{array}{cccc}
K(x, t) & K\left(x, t_{1}\right) & \cdots & K\left(x, t_{n}\right) \tag{2.10}\\
K\left(t_{1}, t\right) & K\left(t_{1}, t_{1}\right) & \cdots & K\left(t_{1}, t_{n}\right) \\
K\left(t_{2}, t\right) & K\left(t_{2}, t_{1}\right) & \ldots & K\left(t_{2}, t_{n}\right) \\
\cdots & \ldots & \cdots & \ldots \\
K\left(t_{n}, t\right) & K\left(t_{n}, t_{1}\right) & \cdots & K\left(t_{n}, t_{n}\right)
\end{array}\right| t_{1} \ldots d t_{n}
$$

$$
B_{0}(x, t)=K(x, t)
$$

คิเ

$$
C_{n}=\underbrace{b}_{n} \ldots \int_{\mathrm{a}}^{\mathrm{a}} \int_{\mathrm{a}}^{\mathrm{b}}\left|\begin{array}{cccc}
K\left(t_{1}, t_{1}\right) & K\left(t_{1}, t_{2}\right) & \cdots & K\left(t_{1}, t_{n}\right) \tag{2.11}\\
K\left(t_{2}, t_{1}\right) & K\left(t_{2}, t_{2}\right) & \cdots & K\left(t_{2}, t_{n}\right) \\
K\left(t_{3}, t_{1}\right) & K\left(t_{3}, t_{2}\right) & \cdots & K\left(t_{3}, t_{n}\right) \\
\cdots & \ldots & \cdots & \cdots \\
K\left(t_{n}, t_{1}\right) & K\left(t_{n}, t_{2}\right) & \cdots & K\left(t_{n}, t_{n}\right)
\end{array}\right| d t_{1} \ldots d t_{n}
$$

$$
\int_{a}^{b} \int_{a}^{b} K^{2}(x, t) d x d t
$$

 λ 4

$$
\text { สี่สูตรวนฺ } \quad R(x, t ; \lambda)=\frac{D(x, t ; \lambda)}{D(\lambda)}
$$

 $R(x, t ; \lambda)$ Y

 $b=19$
\&̊xambigne
กั- กัดกต่ $R(x, t ; \lambda)$
เตตนม

$$
\begin{aligned}
& B_{0}(x, t)=x e^{t} \\
& B_{1}(x, t)=\int_{0}^{1}\left|\begin{array}{ll}
x e^{t} & x e^{t_{1}} \\
t_{1} e^{t} & t_{1} e^{t_{1}}
\end{array}\right| d t_{1}=0
\end{aligned}
$$

$$
B_{2}(x, t)=\int_{0}^{1} \int_{0}^{1}\left|\begin{array}{ccc}
x e^{t} & x e^{t_{1}} & x e^{t_{2}} \\
t_{1} e^{t} & t_{1} e^{t_{1}} & t_{1} e^{t_{2}} \\
t_{2} e^{t^{t}} & t_{2} e^{t_{1}} & t_{2} e^{t_{2}}
\end{array}\right| d t_{1} d t_{2}=0
$$

$$
\begin{aligned}
& C_{1}=\int_{0}^{1} K\left(t_{1}, t_{1}\right) d t_{1}=\int_{0}^{1} t_{1} e^{t_{1}} d t_{1}=1 \\
& C_{2}=\int_{0}^{1} \int_{0}^{1}\left|\begin{array}{ll}
t_{1} t^{t_{1}} & t_{1} \mathrm{e}^{t_{2}} \\
t_{2} \mathrm{e}^{t_{1}} & t_{2} \mathrm{e}^{t_{2}}
\end{array}\right| \mathrm{dt}_{1} d t_{2}=0
\end{aligned}
$$

คิเ

$$
\begin{aligned}
& D(x, t ; \lambda)=K(x, t)=B_{0}(x, t)=x e^{t} \\
& D(\lambda)=1+\frac{(-1)^{1}}{1!} C_{1} \lambda^{1}=1-\lambda \quad \text { q }
\end{aligned}
$$

$$
R(x, t ; \lambda)=\frac{D(x, t ; \lambda)}{D(\lambda)}=\frac{x e^{t}}{1-\lambda}
$$

2-กึณกต่ $\varphi(\mathrm{x})$

$$
\varphi(x)-\lambda \int_{0}^{1} x e^{t} \varphi(t) d t=f(x) \quad(\lambda \neq 1)
$$

$$
\varphi(x)=f(x)+\lambda \int_{0}^{1} \frac{x e^{t}}{1-\lambda} f(t) d t
$$

เบี $f(x)=e^{-x}$ เศตร

$$
\varphi(x)=e^{-x}+\frac{\lambda x}{1-\lambda} \int_{0}^{1} e^{t} e^{-t} d t
$$

ษ $\varphi(x)=\mathrm{e}^{-\mathrm{x}}+\frac{\lambda}{1-\lambda} \mathrm{x}$

$$
\begin{equation*}
\varphi(x)=x+\lambda \int_{0}^{1} \mathrm{xt} \varphi(t) d t \tag{*}
\end{equation*}
$$

ก- ชยูต ตู่ $D(\lambda)=1-\frac{\lambda}{3}$ वิt $D(x, t ; \lambda)=x t$ ฯ
ชชึเตตาร $K(x, t)=x t ; a=0$ จิเ $b=1$ ฯ
เชึนตตร

$$
\begin{aligned}
B_{0}(x, t) & =x t \\
B_{1}(x, t) & =\int_{0}^{1}\left|\begin{array}{ll}
x t & x t_{1} \\
t_{1} t & t \\
t_{1} t_{1}
\end{array}\right| d t_{1}=\int_{0}^{1}\left(x t t_{1}^{2}-x t t_{1}^{2}\right) d t_{1}=0 \\
B_{2}(x, t) & =\int_{0}^{1} \int_{0}^{1} \int_{0}^{x t}\left|\begin{array}{lll}
x t & x t_{1} & x t_{2} \\
t_{1} & t_{2} & t_{1} t_{1} \\
t_{2} & t_{1} t_{2} t_{2} \\
t_{1} & t_{2} t_{2}
\end{array}\right| d t_{1} d t_{2} \\
& =t t_{1} t_{2} \iint_{0}^{1} \int_{0}^{1}\left|\begin{array}{lll}
x & x & x \\
t_{1} & t_{1} & t_{1} \\
t_{2} & t_{2} & t_{2}
\end{array}\right| d t_{1} d t_{2} \\
& =t t_{1} t_{2} x t_{1} t_{2} \iint_{0}^{1} \iint_{0}^{1}\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right| d t_{1} d t_{2}=0
\end{aligned}
$$

 รษรุณกา C_{n} :

$$
\begin{aligned}
& \mathrm{C}_{1}=\int_{0}^{1} \mathrm{~K}\left(\mathrm{t}_{1}, \mathrm{t}_{1}\right) \mathrm{dt} t_{1}=\int_{0}^{1} \mathrm{t}_{1}^{2} d t_{1}=\left.\frac{\mathrm{t}_{1}^{3}}{3}\right|_{0} ^{1}=\frac{1}{3} \\
& \mathrm{C}_{2}=\int_{0}^{1} \int_{0}^{1}\left|\begin{array}{ll}
t_{1} t_{1} & \mathrm{t}_{1} \mathrm{t}_{2} \\
\mathrm{t}_{2} \mathrm{t}_{1} & \mathrm{t}_{2} \mathrm{t}_{2}
\end{array}\right| \mathrm{dt}_{1} d t_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}_{3} & =\int_{0}^{1} \int_{0}^{1} \iint_{0}^{1}\left|\begin{array}{lll}
t_{1} t_{1} & t_{1} t_{2} & t_{1} t_{3} \\
t_{2} t_{1} & t_{2} t_{2} & t_{2} t_{3} \\
t_{3} t_{1} & t_{3} t_{2} & t_{3} t_{3}
\end{array}\right| d t_{1} d t_{2} d t_{3} \\
& =t_{1} t_{2} t_{3} \iint_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left|\begin{array}{lll}
t_{1} & t_{2} & t_{3} \\
t_{3} & t_{2} & t_{3} \\
t_{1} & t_{2} & t_{3}
\end{array}\right| d t_{1} d t_{2} d t_{3}=0
\end{aligned}
$$

ลิt $\quad D(\lambda)=1+\frac{(-1)^{1}}{1!} C_{1} \lambda^{1}=1-\frac{\lambda}{3}$ ติส 9

$$
\varphi(\mathrm{x})=\mathrm{f}(\mathrm{x})+\lambda \int_{0}^{1} \mathrm{R}(\mathrm{x}, \mathrm{t} ; \lambda) \mathrm{f}(\mathrm{t}) \mathrm{dt} \quad \text { (ตตยตยีตาร (2.6)) }
$$

$$
\begin{aligned}
& =x+\left.\frac{\lambda x}{1-\frac{\lambda}{3}} \frac{\mathfrak{t}^{3}}{3}\right|_{0} ^{1}=x+\frac{\lambda x}{1-\frac{\lambda}{3}}\left(\frac{1}{3}-0\right) \\
& =x+\frac{\lambda x}{3-\lambda}=\frac{3 x}{3-\lambda}
\end{aligned}
$$

$$
\begin{equation*}
B_{n}(x, t)=C_{n} K(x, t)-n \int_{a}^{b} K(x, s) B_{n-1}(s, t) d s \tag{2.12}
\end{equation*}
$$

कิt

$$
\begin{equation*}
C_{n}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~B}_{\mathrm{n}-1}(\mathrm{~s}, \mathrm{~s}) \mathrm{ds} \tag{2.13}
\end{equation*}
$$

 $K(x, t)=x-2 t$ ันธ $0 \leq x \leq 1$ มิ่ $0 \leq t \leq 1$ ฯ

tramspirnex

เตตตร $C_{0}=1$ ลิเท $B_{0}(x, t)=K(x, t)=x-2 t$ ฯ

$$
C_{1}=\int_{0}^{1} B_{0}(s, s) d s=\int_{0}^{1}(-s) d s=-\frac{1}{2}
$$

ตายู่บหรู (2.12) เสียทตร

$$
\begin{aligned}
B_{1}(x, t) & =C_{1} K(x, t)-\int_{0}^{1} K(x, s) B_{0}(s, t) d s \\
& =-\frac{x-2 t}{2}-\int_{0}^{1}(x-2 s)(s-2 t) d s \\
& =-x-t+2 x t+\frac{2}{3}
\end{aligned}
$$

ตางเตังรั

$$
\begin{aligned}
& C_{2}=\int_{0}^{1}\left(-2 s+2 s^{2}+\frac{2}{3}\right) d s=\frac{1}{3} \\
& \begin{aligned}
& B_{2}(x, t)=C_{2} K(x, t)-2 \int_{0}^{1} K(x, s) B_{1}(s, t) d s \\
& \quad=\frac{x-2 t}{3}-2 \int_{0}^{1}(x-2 s)\left(-s-t+2 s t+\frac{2}{3}\right) d s=0 \\
& C_{3}=\int_{0}^{1} B_{2}(s, s) d s=0 \\
& B_{3}(x, t)=C_{3} K(x, t)-3 \int_{0}^{1} K(x, s) B_{2}(s, t) d s=0
\end{aligned}
\end{aligned}
$$

$$
C_{3}=C_{4}=\cdots=0 \text { 㧱 } B_{3}(x, t)=B_{4}(x, t)=\cdots=0 q
$$

รายูบูยร (2.8) 刢 (2.9) เสีเรตร

$$
\begin{aligned}
D(x, t ; \lambda) & =K(x, t)+\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n!} B_{n}(x, t) \lambda^{n} \\
& =x-2 t+\frac{(-1)^{1}}{1!} B_{1}(x, t) \lambda^{1} \\
& =x-2 t+\left(x+t-2 x t-\frac{2}{3}\right) \lambda
\end{aligned}
$$

जิเต $\quad D(\lambda)=1+\frac{(-1)^{1}}{1!} C_{1} \lambda^{1}+\frac{(-1)^{2}}{2!} C_{2} \lambda^{2}$

$$
=1+\frac{1}{2} \lambda+\frac{1}{6} \lambda^{2}
$$

$$
R(x, t ; \lambda)=\frac{x-2 t+\left(x+t-2 x t-\frac{2}{3}\right) \lambda}{1+\frac{\lambda}{2}+\frac{\lambda^{2}}{6}}
$$

$$
\begin{equation*}
\varphi(x)-\int_{0}^{2 \pi} \sin x \cos t \varphi(t) d t=\cos 2 x \tag{*}
\end{equation*}
$$

 รึ่ใิ $C_{0}=1$ ลิเ $B_{0}(x, t)=K(x, t)=\sin x \cos t$ ฯ

$$
\begin{aligned}
C_{1} & =\int_{0}^{2 \pi} B_{0}(s, s) d s=\int_{0}^{2 \pi} \sin (s) \cos (s) d s \\
& =\frac{1}{2} \int_{0}^{2 \pi} \sin (2 s) d s=\left.\frac{1}{4}(-\cos 2 s)\right|_{0} ^{2 \pi}=0
\end{aligned}
$$

$$
B_{1}(x, t)=C_{1} K(x, t)-\int_{0}^{2 \pi} K(x, s) B_{0}(s, t) d s
$$

$$
=0 \times \sin x \cos t-\int_{0}^{2 \pi} \sin (x) \cos (s) \sin (s) \cos (t) d s=0
$$

การเบีตต่ชรู เชินตตร

$$
\mathrm{C}_{2}=\mathrm{C}_{3}=\cdots=0 \text { बิt } \mathrm{B}_{2}(\mathrm{x}, \mathrm{t})=\mathrm{B}_{3}(\mathrm{x}, \mathrm{t})=\cdots=0 \text { ฯ }
$$

$$
D(x, t ; \lambda)=K(x, t)=\sin x \cos t
$$

बेเ $D(\lambda)=1$ ч

$$
\begin{aligned}
\varphi(x) & =f(x)+\lambda \int_{a}^{b} R(x, t ; \lambda) f(t) d t \\
& =\cos 2 x+(1) \int_{0}^{2 \pi} \sin x \cos t \cos 2 t d t \\
& =\cos 2 x+\frac{1}{2} \sin x \int_{0}^{2 \pi}[\cos 3 t+\cos t] d t \\
& =\cos 2 x+\left.\frac{1}{2} \sin x\left[\frac{1}{3} \sin 3 t+\sin t\right]\right|_{0} ^{2 \pi} \\
& =\cos 2 x
\end{aligned}
$$

itérés et Construction de la résolvante à l'aide des noyeaux itérés)

$$
\varphi(x)-\lambda \int_{a}^{b} K(x, t) \varphi(t) d t=f(x)
$$

$$
\begin{equation*}
\varphi(x)=f(x)+\sum_{n=1}^{+\infty} \psi_{n}(x) \lambda^{n} \tag{2.14}
\end{equation*}
$$

$$
\begin{aligned}
& \psi_{1}(x)=\int_{a}^{b} K(x, t) f(t) d t \\
& \psi_{2}(x)=\int_{a}^{b} K(x, t) \psi_{1}(t) d t=\int_{a}^{b} K_{2}(x, t) f(t) d t \\
& \psi_{3}(x)=\int_{a}^{b} K(x, t) \psi_{2}(t) d t=\int_{a}^{b} K_{3}(x, t) f(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& K_{2}(x, t)=\int_{a}^{b} K(x, z) K_{1}(z, t) d z \\
& K_{3}(x, t)=\int_{a}^{b} K(x, z) K_{2}(z, t) d z
\end{aligned}
$$

$$
\begin{equation*}
K_{n}(x, t)=\int_{a}^{b} K(x, z) K_{n-1}(z, t) d z \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
K_{n}(x, t)=\int_{a}^{b} K_{m}(x, s) K_{n-m}(s, t) d s \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
R(x, t ; \lambda)=\sum_{n=1}^{+\infty} K_{n}(x, t) \lambda^{n-1} \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
|\lambda|<\frac{1}{B} \tag{2.18}
\end{equation*}
$$

เิณง $B=\sqrt{\int_{a}^{b} \int_{a}^{b} K^{2}(x, t) d x d t}$ ฯ

$$
\varphi(x)=f(x)+\lambda \int_{a}^{b} R(x, t ; \lambda) f(t) d t
$$

$$
\begin{equation*}
\varphi(x)-\lambda \int_{0}^{1} \varphi(t) d t=1 \tag{2.20}
\end{equation*}
$$

 เพีเนตร

$$
B^{2}=\int_{0}^{1} \int_{0}^{1} K^{2}(x, t) d x d t=\int_{0}^{1} \int_{0}^{1} d x d t=1
$$

जำู] $B=1$ बิंน $R(x, t ; \lambda)=\sum_{n=1}^{+\infty} K_{n}(x, t) \lambda^{n-1}=\sum_{n=1}^{+\infty} \lambda^{n-1} y$

$$
\begin{aligned}
\varphi(x) & =f(x)+\lambda \int_{0}^{1} R(x, t ; \lambda) f(t) d t \\
& =1+\lambda \int_{0}^{1} \sum_{n=1}^{+\infty} \lambda^{n-1} d t \\
& =1+\lambda \sum_{n=1}^{+\infty} \lambda^{n-1} \\
& =1+\lambda\left(\frac{1}{1-\lambda}\right)=\frac{1}{1-\lambda} \text { ธั่ากะ }|\lambda|<1
\end{aligned}
$$

 สษีตาร 4

$$
\begin{equation*}
\int_{a}^{b} K(x, z) L(z, t) d z=0 \text { 人ิं } \int_{a}^{b} L(x, z) K(z, t) d z=0 \tag{2.21}
\end{equation*}
$$

เชียมตร

$$
\begin{aligned}
\int_{-1}^{1} K(x, z) L(z, t) d z & =\int_{-1}^{1}(x z)\left(z^{2} t^{2}\right) d z \\
& =x t^{2} \int_{-1}^{1} z^{3} d z=0
\end{aligned}
$$

จิเ

$$
\begin{aligned}
\int_{-1}^{1} L(x, z) K(z, t) d z & =\int_{-1}^{1}\left(x^{2} z^{2}\right)(z t) d z \\
& =x^{2} t \int_{-1}^{1} z^{3} d z=0
\end{aligned}
$$

$$
R(x, t ; \lambda)=\sum_{n=1}^{+\infty} K_{n}(x, t) \lambda^{n-1}=K_{1}(x, t)=K(x, t) \quad \text { q }
$$

 $R(x, t ; \lambda) ~ ฯ$

Atumatrnex

เซีเรตร

$$
K_{1}(x, t)=K(x, t)=\sin (x-2 t)
$$

$$
\begin{aligned}
K_{2}(x, t) & =\int_{0}^{2 \pi} K(x, z) K_{1}(z, t) d z \\
& =\int_{0}^{2 \pi} \sin (x-2 z) \sin (z-2 t) d z \\
& =\frac{1}{2} \int_{0}^{2 \pi}[\cos (x+2 t-3 z)-\cos (x-2 t-z)] d z \\
& =\left.\frac{1}{2}\left[-\frac{1}{3} \sin (x+2 t-3 z)+\sin (x-2 t-z)\right]\right|_{z=0} ^{z=2 \pi}=0
\end{aligned}
$$

ร์

$K_{n}(x, t)=\int_{a}^{b} \int_{a}^{b} \cdots \int_{a}^{b} K\left(x, s_{1}\right) K\left(s_{1}, s_{2}\right) \cdots K\left(s_{n-1}, t\right) d s_{1} d s_{2} \cdots d s_{n-1}$ (2.22)

 sommable) เธีMาเรรร ฯ
 ถสูดก:มุรันร 4

 \&tambiche

$$
\begin{aligned}
& K_{1}(x, t)=x-t \\
& K_{2}(x, t)=\int_{0}^{1}(x-s)(s-t) d s=\frac{x+t}{2}-x t-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
K_{3}(x, t) & =\int_{0}^{1}(x-s)\left(\frac{s+t}{2}-s t-\frac{1}{3}\right) d s=-\frac{x-t}{12} \\
K_{4}(x, t) & =-\frac{1}{12} \int_{0}^{1}(x-s)(s-t) d s \\
& =-\frac{1}{12} K_{2}(x, t)=-\frac{1}{12}\left(\frac{x+t}{2}-x t-\frac{1}{3}\right) \\
K_{5}(x, t) & =-\frac{1}{12} \int_{0}^{1}(x-s)\left(\frac{s+t}{2}-s t-\frac{1}{3}\right) d s \\
& =-\frac{1}{12} K_{3}(x, t)=\frac{x-t}{12^{2}} \\
K_{6}(x, t) & =\frac{1}{12^{2}} \int_{0}^{1}(x-s)(s-t) d s \\
& =\frac{1}{12^{2}} K_{2}(x, t)=\frac{1}{12^{2}}\left(\frac{x+t}{2}-x t-\frac{1}{3}\right)
\end{aligned}
$$

$$
9-\text { citcns } n=2 k-1 \text { เฐา }
$$

$$
K_{2 k-1}(x, t)=\frac{(-1)^{k-1}}{12^{k-1}}(x-t)
$$

๒ーธัยถกร $n=2 k$ หตร

$$
K_{2 k}(x, t)=\frac{(-1)^{k-1}}{12^{k-1}}\left(\frac{x+t}{2}-x t-\frac{1}{3}\right)
$$

ชันึษ $\mathrm{k}=1,2,3, \ldots . .9$
 $\mathrm{a}=0$ 领 $\mathrm{b}=1 \mathrm{q}$

$$
\min (x, t)=\left\{\begin{array}{ccc}
x & \text { เบี } 0 \leq x \leq t \\
t & \text { เบี } t \leq x \leq 1
\end{array}\right.
$$

$$
K(x, t)= \begin{cases}e^{x} & \text { เธ่ } 0 \leq x \leq t \\ e^{t} & \text { เบึ } t \leq x \leq 1\end{cases}
$$

เธึเมตร :

$$
\begin{aligned}
& K_{1}(x, t)=K(x, t) \\
& K_{2}(x, t)=\int_{0}^{1} K(x, s) K_{1}(s, t) d s=\int_{0}^{1} K(x, s) K(s, t) d s
\end{aligned}
$$

ชนาธู

ลิท $\quad K(s, t)= \begin{cases}e^{s} & \text { เงี } 0 \leq s \leq t \\ e^{t} & \text { เบี } t \leq s \leq 1\end{cases}$

ตยยูธรั ๔ โชีเนตร :

$$
\begin{equation*}
K_{2}(x, t)=\int_{0}^{t} K(x, s) K(s, t) d s+\int_{t}^{x} K(x, s) K(s, t) d s+\int_{x}^{1} K(x, s) K(s, t) d s \tag{*}
\end{equation*}
$$

$$
\int_{0}^{t} K(x, s) K(s, t) d s=\int_{0}^{t} e^{s} e^{s} d s=\int_{0}^{t} e^{2 s} d s=\frac{e^{2 t}-1}{2}
$$

$$
\int_{t}^{x} K(x, s) K(s, t) d s=\int_{t}^{x} e^{s} e^{t} d s=e^{t} \int_{0}^{t} e^{s} d s=e^{x+t}-e^{2 t}
$$

$$
\int_{x}^{1} K(x, s) K(s, t) d s=\int_{x}^{1} e^{x} e^{t} d s=(1-x) e^{x+t}
$$

$$
K_{2}(x, t)=(2-x) e^{x+t}-\frac{1+e^{2 t}}{2} \text { ธ்โก็ } x>t 4
$$

 ตั่กกร $x>t$:

$$
K_{2}(x, t)=(2-t) e^{x+t}-\frac{1+e^{2 x}}{2} \text { צi์nร } x<t \text { ฯ }
$$

$$
K_{2}(x, t)= \begin{cases}(2-t) e^{x+t}-\frac{1+e^{2 x}}{2} & \text { เบี } 0 \leq x \leq t \\ (2-x) e^{x+t}-\frac{1+e^{2 t}}{2} & \text { เบี } t \leq x \leq 1\end{cases}
$$

$$
K(x, t)= \begin{cases}x+t & \text { เบี } 0 \leq x<t \\ x-t & \text { เบี } t<x \leq 1\end{cases}
$$

เสึเมตร :

$$
\begin{aligned}
& K_{1}(x, t)=K(x, t) \\
& \text { जิt } \quad K_{2}(x, t)=\int_{0}^{1} K(x, s) K(s, t) d s \\
& \text { เนแญ } \\
& K(x, s)=\left\{\begin{array}{lll}
x+s & \text { เงี } & 0 \leq x<s \\
x-s & \text { เชี } s<x \leq 1
\end{array}\right. \\
& \text { Эิ้ } \quad K(s, t)= \begin{cases}s+t & \text { เบี } 0 \leq s<t \\
s-t & \text { เงี } t<s \leq 1\end{cases}
\end{aligned}
$$

$$
\mathrm{K}_{2}(\mathrm{x}, \mathrm{t})=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
$$

โนถู $I_{1}=\int_{0}^{x}(x-s)(s+t) d s=\frac{x^{3}}{6}+\frac{x^{2} t}{2}$

$$
I_{2}=\int_{x}^{t}(x+s)(s+t) d s=\frac{5 t^{3}}{6}-\frac{5 x^{3}}{6}+\frac{3}{2} x t^{2}-\frac{3}{2} x^{2} t
$$

बิभी $I_{3}=\int_{t}^{1}(x+s)(s-t) d s=\frac{t^{3}}{6}+\frac{x^{2}}{2}-x t+\frac{x}{2}-\frac{t}{2}+\frac{1}{3}$ g

$$
K_{2}(x, t)=t^{3}-\frac{2}{3} x^{3}-x^{2} t+2 x t^{2}-x t+\frac{x-t}{2}+\frac{1}{3} \text { ํ่ถตะ } x<t
$$

+ กรลีกีตีตร: $x>t$ เชึนตตร

$$
\mathrm{K}_{2}(\mathrm{x}, \mathrm{t})=\mathrm{I}_{1}^{\prime}+\mathrm{I}_{2}^{\prime}+\mathrm{I}_{3}^{\prime}
$$

โนแด $\dot{I}_{1}=\int_{0}^{t}(x-s)(s+t) d s=\frac{3}{2} x t^{2}-\frac{5 t^{3}}{6}$

$$
I_{2}^{\prime}=\int_{t}^{x}(x-s)(s-t) d s=\frac{x^{3}}{6}-\frac{t^{3}}{6}-\frac{1}{2} x^{2} t+\frac{1}{2} x t^{2}
$$

बิเ $\dot{I}_{3}^{\prime}=\int_{x}^{1}(x+s)(s-t) d s=-\frac{5 x^{3}}{6}+\frac{3 x^{2} t}{2}+\frac{x-t}{2}-x t+\frac{1}{3}$ و

$$
K_{2}(x, t)=-t^{3}-\frac{2}{3} x^{3}+x^{2} t+2 x t^{2}-x t+\frac{x-t}{2}+\frac{1}{3} \text { ธัเยา } x>t
$$

$\mathrm{K}_{2}(\mathrm{x}, \mathrm{t})= \begin{cases}-\frac{2}{3} \mathrm{x}^{3}+\mathrm{t}^{3}-\mathrm{x}^{2} \mathrm{t}+2 \mathrm{xt}^{2}-\mathrm{xt}+\frac{\mathrm{x}-\mathrm{t}}{2}+\frac{1}{3} & \text { สษ่ } 0 \leq \mathrm{x}<\mathrm{t} \\ -\frac{2}{3} \mathrm{x}^{3}-\mathrm{t}^{3}+\mathrm{x}^{2} \mathrm{t}+2 \mathrm{xt}^{2}-\mathrm{xt}+\frac{\mathrm{x}-\mathrm{t}}{2}+\frac{1}{3} & \text { เึี } \mathrm{t}<\mathrm{x} \leq 1\end{cases}$

4,5, ... 9

$$
\varphi(\mathrm{x})-\lambda \int_{0}^{1} \mathrm{xt} \varphi(\mathrm{t}) \mathrm{dt}=\mathrm{f}(\mathrm{x})
$$

 ษรูงฐู่บ์:

$$
\begin{aligned}
& K_{1}(x, t)=x t \\
& K_{2}(x, t)=\int_{0}^{1}(x z)(z t) d z=\frac{x t}{3} \\
& K_{3}(x, t)=\frac{1}{3} \int_{0}^{1}(x z)(z t) d z=\frac{x t}{3^{2}}
\end{aligned}
$$

\qquad

$$
K_{n}(x, t)=\frac{x t}{3^{n-1}}
$$

โาษู่บษม (2.17) เธีเนตรง:

$$
R(x, t ; \lambda)=\sum_{n=1}^{\infty} K_{n}(x, t) \lambda^{n-1}=x t \sum_{n=1}^{\infty}\left(\frac{\lambda}{3}\right)^{n-1}=\frac{3 x t}{3-\lambda}
$$

ชันดง $|\lambda|<\frac{1}{B}=\frac{1}{\frac{1}{3}}=3$
ตีเโตร $B=\sqrt{\int_{0}^{1} \int_{0}^{1} K^{2}(x, t) d x d t}=\sqrt{\int_{0}^{1} \int_{0}^{1}(x t)^{2} d x d t}=\frac{1}{3}$ y

$$
\varphi(\mathrm{x})=\mathrm{f}(\mathrm{x})+\lambda \int_{0}^{1} \frac{3 \mathrm{xt}}{3-\lambda} \mathrm{f}(\mathrm{t}) \mathrm{dt}(\lambda \neq 3) \quad \varphi
$$

$$
\begin{aligned}
& \varphi(x)=x+\frac{3 x \lambda}{3-\lambda} \int_{0}^{1} t^{2} d t \\
& =x+\left.\frac{3 x \lambda}{3-\lambda} \frac{t^{3}}{3}\right|_{0} ^{1}=x+\frac{x \lambda}{3-\lambda}=\frac{3 x}{3-\lambda}(\lambda \neq 3) \varphi
\end{aligned}
$$

 $R_{2}(x, t ; \lambda)$ โ氏ృ

$$
K(x, t)=x t+x^{2} t^{2} ; a=-1 \text { कิt } b=1 \quad \text { Y }
$$

Atammgance

$$
\begin{aligned}
& M_{1}(x, t)=x t \\
& M_{2}(x, t)=\int_{-1}^{1} M(x, z) M_{1}(z, t) d z=\int_{-1}^{1}(x z)(z t) d z=\frac{2 x t}{3} \\
& M_{3}(x, t)=\int_{-1}^{1} M(x, z) M_{2}(z, t) d z=\int_{-1}^{1}(x z)\left(\frac{2 z t}{3}\right) d z=\frac{2^{2} x t}{3^{2}} \\
& M_{4}(x, t)=\int_{-1}^{1} M(x, z) M_{3}(z, t) d z=\int_{-1}^{1}(x z)\left(\frac{2^{2} z t}{3^{2}}\right) d z=\frac{2^{3} x t}{3^{3}}
\end{aligned}
$$

$$
M_{n}(x, t)=\frac{2^{n-1} x t}{3^{n-1}}
$$

$$
\begin{aligned}
& N_{l}(x, t)=x^{2} \mathfrak{t}^{2} \\
& N_{2}(x, t)=\int_{-1}^{1} N(x, z) N_{l}(z, t) d z=\int_{-1}^{1}\left(x^{2} z^{2}\right)\left(z^{2} t^{2}\right) d z=\frac{2 x^{2} t^{2}}{5} \\
& N_{3}(x, t)=\int_{-1}^{1} N(x, z) N_{2}(z, t) d z=\int_{-1}^{1}\left(x^{2} z^{2}\right)\left(\frac{2 z^{2} t^{2}}{5}\right) d z=\frac{2^{2} x^{2} t^{2}}{5^{2}}
\end{aligned}
$$

\qquad
\qquad

$$
N_{n}(x, t)=\frac{2^{n-1} x^{2} t^{2}}{5^{n-1}}
$$

ตายูงยรู (2.17) เธพียตร:

$$
\begin{aligned}
& R_{K}(x, t ; \lambda)=R_{M}(x, t ; \lambda)+R_{N}(x, t ; \lambda) \\
&=\sum_{n=1}^{\infty} M_{n}(x, t) \lambda^{n-1}+\sum_{n=1}^{\infty} N_{n}(x, t) \lambda^{n-1} \\
&=x t \sum_{n=1}^{\infty}\left(\frac{2 \lambda}{3}\right)^{n-1}+x^{2} t^{2} \sum_{n=1}^{\infty}\left(\frac{2 \lambda}{5}\right)^{n-1} \\
&=\frac{3 x t}{3-2 \lambda}+\frac{5 x^{2} t^{2}}{5-2 \lambda}
\end{aligned}
$$

นันด $|\lambda|<\frac{3}{2}$ ฯ

$$
K(x, t)=\sum_{m=1}^{n} M^{(\mathbb{m})}(x, t)
$$

$$
A_{n}=\int_{a}^{b} K_{n}(x, t) d x \quad(n=1,2, \ldots)
$$

$$
\begin{equation*}
\frac{D^{\prime}(\lambda)}{D(\lambda)}=-\sum_{n=1}^{\infty} A_{n} \lambda^{n-1} \tag{2.25}
\end{equation*}
$$

 caractéristique) 9

(Équations Intégrales à Noyau Dégénéré)

 รโษท่

$$
\begin{equation*}
K(x, t)=\sum_{k=1}^{n} a_{k}(x) b_{k}(t) \tag{2.26}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)-\lambda \int_{a}^{b}\left[\sum_{k=1}^{n} a_{k}(x) b_{k}(t)\right] \varphi(t) d t=f(x) \tag{2.27}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)=f(x)+\lambda \sum_{k=1}^{n} a_{k}(x) \int_{a}^{b} b_{k}(t) \varphi(t) d t \tag{2.28}
\end{equation*}
$$

โธีเயีเมต่ม

$$
\begin{equation*}
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~b}_{\mathrm{k}}(\mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}=\mathrm{C}_{\mathrm{k}}(\mathrm{k}=1,2, \ldots, \mathrm{n}) \tag{2.29}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)=f(x)+\lambda \sum_{k=1}^{n} C_{k} a_{k}(x) \tag{2.30}
\end{equation*}
$$

 (2.27) เชึนทตร:

$$
\sum_{m=1}^{n}\left\{C_{m}-\int_{a}^{b} b_{m}(t)\left[f(t)+\lambda \sum_{k=1}^{n} C_{k} a_{k}(t)\right] d t\right\} a_{m}(x)=0
$$

ษ

$$
\begin{aligned}
& C_{m}-\int_{a}^{b} b_{m}(t)\left[f(t)+\lambda \sum_{k=1}^{n} C_{k} a_{k}(t)\right] d t=0 \\
& C_{m}-\lambda \sum_{k=1}^{n} C_{k} \int_{a}^{b} a_{k}(t) b_{m}(t) d t=\int_{a}^{b} b_{m}(t) f(t) d t
\end{aligned}
$$

เชีเชีนยตเด

$$
a_{k m}=\int_{a}^{b} a_{k}(t) b_{m}(t) d t, \quad f_{m}=\int_{a}^{b} b_{m}(t) f(t) d t
$$

เราเรเชียทตร

$$
C_{m}-\lambda \sum_{k=1}^{n} a_{k m} C_{k}=f_{m}(m=1,2, \ldots, n)
$$

 วยง่าเญิตีต

ธั่าm $\mathrm{k}=1,2,3, \ldots, \mathrm{n}$ ฯ
 สยยาะ:

$$
\varphi(x)=f(x)+\lambda \sum_{k=1}^{n} C_{k} a_{k}(x)
$$

$$
\begin{equation*}
\varphi(\mathrm{x})-\int_{-1}^{1} \mathrm{e}^{\arcsin \mathrm{x}} \varphi(\mathrm{t}) \mathrm{dt}=\operatorname{tg} \mathrm{x} \tag{i}
\end{equation*}
$$

8ํamatigno

$$
\varphi(x)=e^{\arcsin x} \int_{-1}^{1} \varphi(t) d t+\operatorname{tg} x
$$

นกีสสเสึษหหาเ

$$
\begin{equation*}
\mathbf{C}=\int_{-1}^{1} \varphi(t) d t \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)=C e^{\arcsin x}+\operatorname{tg} x \tag{iii}
\end{equation*}
$$

$$
\begin{equation*}
C=\int_{-1}^{1}\left(C e^{\arcsin t}+\operatorname{tg} t\right) d t \tag{iv}
\end{equation*}
$$

ษ $\quad C=C \int_{-1}^{1} e^{\operatorname{arcsint} t} d t+\int_{-1}^{1} \operatorname{tgt} d t$
กnt $\mathrm{I}_{1}=\int_{-1}^{1} \operatorname{tg} t d t$ बेंt $\mathrm{I}_{2}=\int_{-1}^{1} \mathrm{e}^{\arcsin t} d t$ प

$$
I_{1}=\int_{-1}^{1} \frac{\sin t}{\cos t} d t=-\int_{-1}^{1} \frac{d(\cos t)}{\cos t}=-\left.\ln |\cos t|\right|_{-1} ^{1}=0
$$

 โชีฝตต

ธษษึการ (iv) โร่นั:

$$
C=C\left(\frac{e^{\frac{\pi}{2}}+e^{-\frac{\pi}{2}}}{2}\right)+0 \quad \text { มึใุิ } C=0
$$

$$
\varphi(x)=\operatorname{tg} x \quad \varphi
$$

$$
\begin{equation*}
\varphi(x)-\lambda \int_{-\pi}^{\pi}\left(x \cos t+t^{2} \sin x+\cos x \sin t\right) \varphi(t) d t=x \tag{i}
\end{equation*}
$$

Bxamatirnow

$$
\begin{aligned}
\varphi(x)= & \lambda x \int_{-\pi}^{\pi} \varphi(t) \cos t d t+\lambda \sin x \int_{-\pi}^{\pi} t^{2} \varphi(t) d t \\
& +\lambda \cos x \int_{-\pi}^{\pi} \varphi(t) \sin t d t+x
\end{aligned}
$$

เนีผรเชึนรตาน

$$
\begin{equation*}
\mathbb{C}_{1}=\int_{-\pi}^{\pi} \varphi(t) \cos t d t, C_{2}=\int_{-\pi}^{\pi} \mathfrak{t}^{2} \varphi(t) d t, C_{3}=\int_{-\pi}^{\pi} \varphi(t) \sin t d t \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x)=C_{1} \lambda x+C_{2} \lambda \sin x+C_{3} \lambda \cos x+x \tag{iii}
\end{equation*}
$$

$$
\begin{aligned}
& C_{1}=\int_{-\pi}^{\pi}\left(C_{1} \lambda t+C_{2} \lambda \sin t+C_{3} \lambda \cos t+t\right) \cos t d t \\
& C_{2}=\int_{-\pi}^{\pi} t^{2}\left(C_{1} \lambda t+C_{2} \lambda \sin t+C_{3} \lambda \cos t+t\right) d t
\end{aligned}
$$

จิเท

$$
C_{3}=\int_{-\pi}^{\pi}\left(C_{1} \lambda t+C_{2} \lambda \sin t+C_{3} \lambda \cos t+t\right) \sin t d t \quad y
$$

$$
\left\{\begin{array}{rl}
\mathrm{C}_{1}-\lambda \pi \mathrm{C}_{3} & =0 \tag{iv}\\
& \mathrm{C}_{2}+4 \lambda \pi \mathrm{C}_{3}
\end{array}=0,\right.
$$

$$
\Delta(\lambda)=\left|\begin{array}{ccc}
1 & 0 & -\lambda \pi \\
0 & 1 & 4 \lambda \pi \\
-2 \lambda \pi & -\lambda \pi & 1
\end{array}\right|=1+2 \lambda^{2} \pi^{2} \neq 0
$$

कิt $\quad C_{3}=\frac{1}{\Delta(\lambda)}\left|\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 \lambda \pi & -\lambda \pi & 2 \pi\end{array}\right|=\frac{2 \pi}{1+2 \lambda^{2} \pi^{2}}$

$$
\varphi(x)=\frac{2 \lambda \pi}{1+2 \lambda^{2} \pi^{2}}(\lambda \pi x-4 \lambda \pi \sin x+\cos x)+x \varphi
$$

$2.1 \varphi(x)=1 ; \varphi(x)+\int_{0}^{1} x\left(e^{x t}-1\right) \varphi(t) d t=e^{x}-x$
$2.2 \varphi(x)=2 e^{x}\left(x-\frac{1}{3}\right) ; \varphi(x)+2 \int_{0}^{1} e^{x-t} \varphi(t) d t=2 x e^{x}$
$2.3 \varphi(x)=1-\frac{2 \sin x}{1-\frac{\pi}{2}} ; \varphi(x)-\int_{0}^{\pi} \cos (x+t) \varphi(t) d t=1$
$2.4 \varphi(x)=\sqrt{x} ; \varphi(x)-\int_{0}^{1} K(x, t) \varphi(t) d t=\sqrt{x}+\frac{x}{15}\left(4 x^{3 / 2}-7\right)$
ชันดร $K(x, t)= \begin{cases}\frac{x(2-t)}{2} & \text { ใิึ } 0 \leq x \leq t \\ \frac{t(2-x)}{2} & \text { เิึ } t \leq x \leq 1\end{cases}$
$2.5 \varphi(x)=e^{x} ; \varphi(x)+\lambda \int_{0}^{1} \sin x t \varphi(t) d t=1$
$2.6 \varphi(x)=\cos x ; \varphi(x)-\int_{0}^{\pi}\left(x^{2}+t\right) \cos t \varphi(t) d t=\sin x$
$2.7 \varphi(x)=x e^{-x} ; \varphi(x)-4 \int_{0}^{\infty} e^{-(x+t)} \varphi(t) d t=(x-1) e^{-x}$
$2.8 \varphi(x)=\cos 2 x ; \varphi(\mathrm{x})-3 \int_{0}^{\pi} \mathrm{K}(\mathrm{x}, \mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}=\cos \mathrm{x}$
ถันดก $K(x, t)= \begin{cases}\sin x \cos t & \text { เบึ } 0 \leq x \leq t \\ \sin t \cos x & \text { เชี } t \leq x \leq \pi\end{cases}$

$$
\varphi(x)-\frac{4}{\pi} \int_{0}^{\infty} \sin x \frac{\sin ^{2} t}{t} \varphi(t) d t=0
$$

$$
\varphi(x)=x+\lambda \int_{0}^{1} x t \varphi(t) d t
$$

$$
\varphi(x)=x+\lambda \int_{0}^{1}\left(x t+t^{2}\right) \varphi(t) d t
$$

โตาะเตัตร

$$
\mathbf{D}(\lambda)=1-\frac{2 \lambda}{3}-\frac{\lambda^{2}}{72}
$$

बิ่

$$
D(x, t ; \lambda)=x t+t^{2}+\lambda\left(\frac{x t^{2}}{2}-\frac{x t}{3}-\frac{t^{2}}{3}+\frac{t}{4}\right) q
$$

เรารเศทร

$$
\begin{array}{lll}
K(x, t)=f_{1}(x) f_{2}(t) & \text { बेभt } & \int_{a}^{b} f_{1}(x) f_{2}(x) d x=A \\
D(\lambda)=1-\lambda A & \text { बिt } & D(x, t ; \lambda)=f_{1}(x) f_{2}(t)
\end{array}
$$

$$
\varphi(x)=f(x)+\frac{\lambda f_{1}(x)}{1-\lambda A_{a}^{b}} \int_{a} f(t) f_{2}(t) d t \varphi
$$

2.13 ธยาตฺูู่ ช ชี

$$
K(x, t)=f_{1}(x) g_{1}(t)+f_{2}(x) g_{2}(t)
$$

$$
K(x, t)=\sum_{m=1}^{n} f_{m}(x) g_{m}(t)
$$

2.14 $K(x, t)=2 x-t ; 0 \leq x \leq 1,0 \leq t \leq 1$
$2.15 \mathrm{~K}(\mathrm{x}, \mathrm{t})=\mathrm{x}^{2} \mathrm{t}-\mathrm{xt}^{2} ; 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{t} \leq 1$
2.16 $K(x, t)=\sin x \cos t ; 0 \leq x \leq 2 \pi, 0 \leq t \leq 2 \pi$
2.17 $K(x, t)=\sin x-\sin t ; 0 \leq x \leq 2 \pi, 0 \leq t \leq 2 \pi$
 โฺาษร
2.18 $K(x, t)=x+t+1 ;-1 \leq x \leq 1,-1 \leq t \leq 1$
$2.19 \mathrm{~K}(\mathrm{x}, \mathrm{t})=1+3 \mathrm{xt} ; 0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{t} \leq 1$
2.20 $K(x, t)=4 x t-x^{2} ; 0 \leq x \leq 1,0 \leq t \leq 1$
$2.21 \quad K(x, t)=e^{x-t} ; 0 \leq x \leq 1,0 \leq t \leq 1$
2.22 $K(x, t)=\sin (x+t) ; 0 \leq x \leq 2 \pi, 0 \leq t \leq 2 \pi$
2.23 $K(x, t)=x-\operatorname{sh} t ;-1 \leq x \leq 1,-1 \leq t \leq 1$

$2.24 \varphi(\mathrm{x})-\lambda \int_{0}^{2 \pi} \sin (\mathrm{x}+\mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}=1$
$2.25 \varphi(x)-\lambda \int_{0}^{1}(2 x-t) \varphi(t) d t=\frac{x}{6}$
$2.26 \varphi(x)-\int_{0}^{2 \pi} \sin x \cos t \varphi(t) d t=\cos 2 x$
$2.27 \varphi(x)+\int_{0}^{1} e^{x-t} \varphi(t) d t=e^{x}$
$2.28 \varphi(x)-\lambda \int_{0}^{1}\left(4 x t-x^{2}\right) \varphi(t) d t=x$
 โณโุృ
$2.29 \mathrm{~K}(\mathrm{x}, \mathrm{t})=\mathrm{x}-\mathrm{t} ; \mathrm{a}=-1, \mathrm{~b}=1$
$2.30 \quad K(x, t)=\sin (x-t) ; a=0 ; b=\frac{\pi}{2} \quad(n=2,3)$
2.31 $K(x, t)=(x-t)^{2} ; a=-1, b=1 \quad(n=2,3)$
2.32 $K(x, t)=x+\sin t ; a=-\pi, b=\pi$
$2.33 \mathrm{~K}(\mathrm{x}, \mathrm{t})=\mathrm{xe}^{\mathrm{t}} ; \mathrm{a}=0, \mathrm{~b}=1$
$2.34 K(x, t)=e^{x} \cos t ; a=0, b=\pi$

$2.35 K(x, t)=e^{|x-t|} ; a=0, b=1$
$2.36 \quad K(x, t)=e^{|x|+t} ; a=-1, b=1$

$2.36 \mathrm{~K}(\mathrm{x}, \mathrm{t})=\mathrm{e}^{\mathrm{x}+\mathrm{t}} ; \mathrm{a}=0, \mathrm{~b}=1$
2.37 $K(x, t)=\sin x \cos t ; a=0, b=\frac{\pi}{2}$
$2.38 \mathrm{~K}(\mathrm{x}, \mathrm{t})=\mathrm{xe}^{\mathrm{t}} ; \mathrm{a}=-1, \mathrm{~b}=1$
$2.39 \mathrm{~K}(\mathrm{x}, \mathrm{t})=(1+\mathrm{x})(1-\mathrm{t}) ; \mathrm{a}=-1, \quad \mathrm{~b}=0$
2.40 $K(x, t)=x^{2} t^{2} ; a=-1, b=1$
2.41 $K(x, t)=x t ; a=-1, b=1$

2.42 $K(x, t)=\sin x \cos t+\cos 2 x \sin 2 t ; a=0, b=2 \pi$
2.43 $\mathrm{K}(\mathrm{x}, \mathrm{t})=1+(2 \mathrm{x}-1)(2 \mathrm{t}-1) ; \mathrm{a}=0, \mathrm{~b}=1$

$$
\varphi(x)-\lambda \int_{0}^{x} K(x, t) \varphi(t) d t=f(x)
$$

$$
\varphi(x)-\mu \int_{a}^{b} R(x, t ; \lambda) \varphi(t) d t=f(x)
$$

เธึงึม $R(x, t ; \lambda+\mu)$ ฯ
2.46 เตตใ

$$
\int_{a}^{b} \int_{a}^{b} K^{2}(x, t) d x d t=B^{2}
$$

ิิ

$$
\int_{a}^{b} \int_{a}^{b} K_{n}^{2}(x, t) d x d t=B_{n}^{2}
$$

$2.47 \varphi(x)-4 \int_{0}^{\frac{\pi}{2}} \sin ^{2} x \varphi(t) d t=2 x-\pi$
$2.48 \varphi(x)-\lambda \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \operatorname{tgt} \varphi(t) d t=\operatorname{cotg} x$
$2.49 \varphi(x)-\lambda \int_{0}^{1} \cos (q \ln t) \varphi(t) d t=1$
$2.50 \varphi(x)-\lambda \int_{0}^{1} \arccos t \varphi(t) d t=\frac{1}{\sqrt{1-x^{2}}}$
2.51
2.52
2.53
$\varphi(\mathrm{x})-\lambda \int_{0}^{1}\left(\ln \frac{1}{\mathrm{t}}\right)^{\mathrm{p}} \varphi(\mathrm{t}) \mathrm{dt}=1 \quad(\mathrm{p}>-1)$
$\varphi(x)-\lambda \int_{0}^{1}(x \ln t-t \ln x) \varphi(t) d t=\frac{6}{5}(1-4 x)$
$\varphi(x)-\lambda \int_{0}^{\frac{\pi}{2}} \sin x \cos t \varphi(t) d t=\sin x$
$2.54 \varphi(x)-\lambda \int_{0}^{2 \pi}|\pi-t| \sin x \varphi(t) d t=x$
2.55
$\varphi(\mathrm{x})-\lambda \int_{0}^{\pi} \sin (\mathrm{x}-\mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}=\cos \mathrm{x}$
$2.56 \varphi(\mathrm{x})-\lambda \int_{0}^{2 \pi}(\sin \mathrm{x} \cos \mathrm{t}-\sin 2 \mathrm{x} \cos 2 \mathrm{t}+\sin 3 \mathrm{x} \cos 3 \mathrm{t}) \varphi(\mathrm{t}) \mathrm{dt}=\cos \mathrm{x}$
$2.57 \varphi(\mathrm{x})-\frac{1}{2} \int_{-1}^{1}\left[\mathrm{x}-\frac{1}{2}\left(3 \mathrm{t}^{2}-1\right)+\frac{\mathrm{t}}{2}\left(3 \mathrm{x}^{2}-1\right)\right] \varphi(\mathrm{t}) \mathrm{dt}=1$

- $\Delta \diamond \diamond$ 雨

(Ammexell)

 $\{a \leq x, t \leq b\}\left(\mathbb{y} \Omega_{0}=\{0 \leq x, t \leq a\}\right)$ q

๒- ถix $\mathrm{L}_{2}(\mathrm{a}, \mathrm{b})$

$$
\begin{equation*}
\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq \int_{a}^{b} f^{2}(x) d x \int_{a}^{b} g^{2}(x) d x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\langle f, g\rangle=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) \mathrm{dx} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\|f\|=\sqrt{(f, f)}=\sqrt{\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}^{2}(\mathrm{x}) \mathrm{dx}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\|f+g\| \leq\|f\|+\|g\| \tag{4}
\end{equation*}
$$

G- ฉi่า $C^{(t)}(a, b)$

$$
\begin{equation*}
\|f\|=\sum_{k=0}^{l} \max _{\leq x \leq b}\left|f^{(k)}(x)\right| \tag{5}
\end{equation*}
$$

9ิ

$$
f^{(0)}(x)=f(x) \text { ฯ }
$$

$$
\int_{a}^{b} \int_{a}^{b} F^{2}(x, t) d x d t<+\infty
$$

$$
\begin{equation*}
\|F\|=\sqrt{\int_{a}^{b} \int_{a}^{b} F^{2}(x, t) d x d t} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\underset{z=a}{\operatorname{res}} f(z)=\frac{1}{2 \pi i} \int_{C} f(z) d z \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\underset{z=a}{\operatorname{res}} f(z)=\frac{1}{(n-1)!} \lim _{z \rightarrow a} \frac{d^{n-1}}{d z^{n-1}}\left\{(z-a)^{n} f(z)\right\} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{res}_{z=a} f(z)=\lim _{z \rightarrow a}\{(z-a) f(z)\} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\underset{z=a}{\operatorname{res}} f(z)=\frac{\varphi(a)}{\psi^{\prime}(a)} \tag{10}
\end{equation*}
$$

(Annexe2)

$$
\begin{equation*}
\phi(\alpha)=\int_{u_{l}}^{u_{2}} f(x, \alpha) d x, \quad a \leq \alpha \leq b \tag{1}
\end{equation*}
$$

เรารเตตตร

$$
\begin{equation*}
\frac{d \phi}{d \alpha}=\int_{u_{1}}^{u_{2}} \frac{\partial f}{\partial \alpha} d x+f\left(u_{2}, \alpha\right) \frac{d u_{2}}{d \alpha}-f\left(u_{1}, \alpha\right) \frac{d u_{1}}{d \alpha} \tag{2}
\end{equation*}
$$

ตัเกา $\alpha \in[a, b]$ ฯ

ชชึเฉตาร

$$
\begin{aligned}
& \phi(\alpha)=\int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f(x, \alpha) d x \\
\Delta \phi & =\phi(\alpha+\Delta \alpha)-\phi(\alpha)=\int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f(x, \alpha+\Delta \alpha) d x-\int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f(x, \alpha) d x \\
& =\int_{u_{1}(\alpha+\Delta \alpha)}^{u_{1}(\alpha)} f(x, \alpha+\Delta \alpha) d x+\int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f(x, \alpha+\Delta \alpha) d x \\
& \quad \int_{u_{2}(\alpha)}^{u_{2}(\alpha+\Delta \alpha)} f(x, \alpha+\Delta \alpha) d x-\int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f(x, \alpha) d x \\
& =\int_{u_{1}(\alpha)}^{u_{2}(\alpha)}[f(x, \alpha+\Delta \alpha)-f(x, \alpha)] d x
\end{aligned}
$$

$$
\begin{equation*}
+\int_{u_{2}(\alpha)}^{u_{2}(\alpha+\Delta \alpha)} f(x, \alpha+\Delta \alpha) d x-\int_{u_{1}(\alpha)}^{u_{1}(\alpha+\Delta \alpha)} f(x, \alpha+\Delta \alpha) d x \tag{*}
\end{equation*}
$$

$$
\begin{align*}
& \int_{u_{1}(\alpha)}^{u_{2}(\alpha)}[f(x, \alpha+\Delta \alpha)-f(x, \alpha)] d x=\Delta \alpha \int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f_{\alpha}(x, \xi) d x \quad \text { (**) } \\
& \int_{u_{1}(\alpha+\Delta \alpha)}^{u_{1}(\alpha)} f(x, \alpha+\Delta \alpha) d x=f\left(\xi_{1}, \alpha+\Delta \alpha\right)\left[u_{1}(\alpha+\Delta \alpha)-u_{1}(\alpha)\right] \quad(* * *) \\
& \int_{u_{2}(\alpha)}^{u_{2}(\alpha+\Delta \alpha)} f(x, \alpha+\Delta \alpha) d x=f\left(\xi_{2}, \alpha+\Delta \alpha\right)\left[u_{2}(\alpha+\Delta \alpha)-u_{2}(\alpha)\right] \quad(* * * *)
\end{align*}
$$

จิเ

$$
\frac{\Delta \phi}{\Delta \alpha}=\int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f_{\alpha}(x, \xi) d x+f\left(\xi_{2}, \alpha+\Delta \alpha\right) \frac{\Delta u_{2}}{\Delta \alpha}-f\left(\xi_{1}, \alpha+\Delta \alpha\right) \frac{\Delta u_{1}}{\Delta \alpha}
$$

$$
\frac{d \phi}{d \alpha}=\int_{u_{1}(\alpha)}^{u_{2}(\alpha)} f_{\alpha}(x, \alpha) d x+f\left[u_{2}(\alpha), \alpha\right] \frac{d u_{2}}{d \alpha}-f\left[u_{1}(\alpha), \alpha\right] \frac{d u_{1}}{d \alpha} \text { ติศ }
$$

ต่̊กำ

$$
\phi^{\prime}(\alpha)=\int_{\alpha}^{\alpha^{2}} \frac{\partial}{\partial \alpha}\left(\frac{\sin \alpha x}{x}\right) d x+\frac{\sin \left(\alpha \cdot \alpha^{2}\right)}{\alpha^{2}} \frac{d}{d \alpha}\left(\alpha^{2}\right)-\frac{\sin (\alpha \cdot \alpha)}{\alpha} \frac{d}{d \alpha}(\alpha)
$$

$$
\begin{aligned}
& =\int_{\alpha}^{\alpha^{2}} \cos \alpha x d x+\frac{2 \sin \alpha^{3}}{\alpha}-\frac{\sin \alpha^{2}}{\alpha} \\
& =\left.\frac{1}{\alpha} \sin \alpha x\right|_{\alpha} ^{\alpha^{2}}+\frac{2 \sin \alpha^{3}}{\alpha}-\frac{\sin \alpha^{2}}{\alpha} \\
& =\frac{\sin \alpha^{3}}{\alpha}-\frac{\sin \alpha^{2}}{\alpha}+\frac{2 \sin \alpha^{3}}{\alpha}-\frac{\sin \alpha^{2}}{\alpha} \\
& =\frac{3 \sin \alpha^{3}-2 \sin \alpha^{2}}{\alpha}
\end{aligned}
$$

$$
\text { 2- ตาตึรกสโษ } \int_{0}^{\pi} \frac{d x}{(2-\cos x)^{2}} \text { ฯ }
$$

Bxamatarax

คึ- ตาเง $u=\tan \frac{x}{2}$ si
$\sin \frac{x}{2}=\frac{u}{\sqrt{1+u^{2}}}, \cos \frac{x}{2}=\frac{1}{\sqrt{1+u^{2}}}$,
$\cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}=\frac{1-u^{2}}{1+u^{2}}$,

$$
\begin{aligned}
& \text { - โชึ } x \rightarrow \pi \text { เฉาะ } u \rightarrow+\infty \text { ฯ }
\end{aligned}
$$

โชึนทตร

$$
\begin{gathered}
\int_{0}^{\pi} \frac{d x}{\alpha-\cos x}=\int_{0}^{+\infty} \frac{1}{\alpha-\left(\frac{1-u^{2}}{1+u^{2}}\right)} \frac{2 d u}{1+u^{2}} \\
=2 \int_{0}^{+\infty} \frac{d u}{\alpha\left(1+u^{2}\right)-1+u^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& =2 \int_{0}^{+\infty} \frac{\mathrm{du}}{(\alpha+1) u^{2}+(\alpha-1)} \\
& =\frac{2}{(\alpha+1)} \int_{0}^{+\infty} \frac{\mathrm{du}}{u^{2}+\left(\sqrt{\frac{\alpha-1}{\alpha+1}}\right)^{2}} \\
& =\frac{2}{(\alpha+1)} \cdot \frac{1}{\left.\sqrt{\frac{\alpha-1}{\alpha+1}} \tan ^{-1}\left(\frac{u}{\sqrt{\frac{\alpha-1}{\alpha+1}}}\right)\right|_{0} ^{+\infty}} \\
& =\frac{2}{\sqrt{\alpha^{2}-1}}\left(\frac{\pi}{2}-0\right)=\frac{\pi}{\sqrt{\alpha^{2}-1}} \text { ติสธั่รกะ } \alpha>1 \text { ч }
\end{aligned}
$$

2- ราตูรกเโัย $\int_{0}^{\pi} \frac{d x}{(2-\cos x)^{2}}$ ฯ
ตาเ $\phi(\alpha)=\int_{0}^{\pi} \frac{d x}{\alpha-\cos x}=\pi\left(\alpha^{2}-1\right)^{-1 / 2} \quad(\alpha>1)$ โการตายวิตรสธีชมีต เธี่นตาร:

$$
\phi^{\prime}(\alpha)=-\int_{0}^{\pi} \frac{d x}{(\alpha-\cos x)^{2}}=-\frac{1}{2} \pi(2 \alpha)\left(\alpha^{2}-1\right)^{-1 / 2}=\frac{-\pi \alpha}{\left(\alpha^{2}-1\right)^{3 / 2}}
$$

जiย] $\int_{0}^{\pi} \frac{d x}{(\alpha-\cos x)^{2}}=\frac{\pi \alpha}{\left(\alpha^{2}-1\right)^{3 / 2}}$
นู่ษโระ $\int_{0}^{\pi} \frac{d x}{(2-\cos x)^{2}}=\frac{2 \pi \sqrt{3}}{9}$

$>\operatorname{Int}(1 /($ alpha-cos $(x)), x=0 .$. Pi) ;

$$
\int_{0}^{\pi} \frac{1}{\alpha-\cos (x)} d x
$$

$>\operatorname{int}\left(1 /(\operatorname{alpha}-\cos (x)), x=0 \ldots\right.$ Pi, $\left.{ }^{\prime} A l l S o l u t i o n s{ }^{\circ}\right)$ assuming alpha>=1;

$$
\frac{\pi}{\sqrt{-1+\alpha^{2}}}
$$

$>\operatorname{Int}\left(1 /(2-\cos (x))^{\wedge} 2, x=0 \ldots\right.$ Pi);

$$
\int_{0}^{\pi} \frac{1}{(2-\cos (x))^{2}} d x
$$

$>\operatorname{int}\left(1 /(2-\cos (x))^{\wedge} 2, x=0 .\right.$. Pi);

$$
\frac{2}{9} \sqrt{3} \pi
$$

ถึา $I(x)=\int_{0}^{x}\left\{\int_{0}^{t} F(u) d u\right\} d t$ कิt $J(x)=\int_{0}^{x}(x-u) F(u) d u$ ฯ
ตษปิตรมถีบรีต เสีเตตร:

$$
I^{\prime}(x)=\int_{0}^{x} F(u) d u \text { बิเ } J^{\prime}(x)=\int_{0}^{x} F(u) d u \text { q }
$$

รึษุ $I^{\prime}(x)=J^{\prime}(x)$ เกียส $I(x)=J(x)+c(c$ เยร $)$

แุธฺร $\mathrm{I}(\mathrm{x})=\mathrm{J}(\mathrm{x})$ ติต ฯ

$$
\begin{equation*}
\int_{0}^{x} \int_{0}^{x} F(x) d x^{2}=\int_{0}^{x}(x-u) F(u) d u \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{x} \int_{0}^{x} \cdots \int_{0}^{x} F(x) d x^{n}=\frac{1}{(n-1)!} \int_{0}^{x}(x-u)^{n-1} F(u) d u \tag{6}
\end{equation*}
$$

$$
F(x, \alpha)=\frac{x^{\alpha}-1}{\ln x}(0<x<1), F(0, \alpha)=0 \text { कิt } F(1, \alpha)=\alpha(\alpha>0) \text { ฯ }
$$

2- ฉลกఇา $\phi(\alpha)$ ลิุ่ $\int_{0}^{1} \frac{x-1}{\ln x} d x$ ฯ
เสึเหยาร $\phi(\alpha)=\int_{0}^{1} F(x, \alpha) d x=\int_{0}^{1} \frac{x^{\alpha}-1}{\ln x} d x \quad(\alpha>0)$
ตาษริตรสับรีต เซีเดตรง

$$
\begin{aligned}
& \phi^{\prime}(\alpha)=\int_{0}^{1} \frac{\partial}{\partial \alpha}\left(\frac{x^{\alpha}-1}{\ln x}\right) d x=\int_{0}^{1} \frac{x^{\alpha} \ln x}{\ln x} d x \\
& =\int_{0}^{1} x^{\alpha} d x=\left.\frac{x^{\alpha+1}}{\alpha+1}\right|_{0} ^{1}=\frac{1}{\alpha+1}
\end{aligned}
$$

$$
\phi(\alpha)=\ln (\alpha+1)+\mathrm{c} \quad(\mathrm{c} \text { น่าธ์ดูลเษ่ง) ฯ }
$$

หขึซบที่ธโร $\phi(\alpha)=\ln (\alpha+1)$
ติเ

$$
\int_{0}^{1} \frac{x-1}{\ln x} d x=\phi(1)=\ln 2 q
$$

ต. ตรรา

$$
\begin{equation*}
\int_{a}^{b} \phi(\alpha) d \alpha=\int_{a}^{b}\left\{\int_{u_{1}}^{u_{2}} f(x, \alpha) d x\right\} d \alpha=\int_{u_{1}}^{u_{2}}\left\{\int_{a}^{b} f(x, \alpha) d \alpha\right\} d x \tag{7}
\end{equation*}
$$

ลิโรา

ถาเง $\psi(\alpha)=\int_{u_{1}}^{u_{2}}\left\{\int_{a}^{\alpha} f(x, \alpha) d \alpha\right\} d x(*) \quad$ y

$$
\psi^{\prime}(\alpha)=\int_{u_{1}}^{u_{2}} \frac{\partial}{\partial \alpha}\left\{\int_{a}^{\alpha} f(x, \alpha) d \alpha\right\} d x=\int_{u_{1}}^{u_{2}} f(x, \alpha) d x=\phi(\alpha)
$$

ตity

$$
\psi(\alpha)=\int_{a}^{\alpha} \phi(\alpha) d \alpha+c\left(^{* *}\right)^{q}
$$

$$
\int_{u_{1}}^{u_{2}}\left\{\int_{a}^{\alpha} f(x, \alpha) d \alpha\right\} d x=\int_{a}^{\alpha}\left\{\int_{u_{1}}^{u_{2}} f(x, \alpha) d x\right\} d \alpha
$$

ตyำ

รบึ่งยาดรงยี่าร (3): $\int_{0}^{\pi} \frac{d x}{\alpha-\cos x}=\frac{\pi}{\sqrt{\alpha^{2}-1}}(\alpha>1)$

$$
\int_{0}^{\pi}\left\{\int_{a}^{b} \frac{d \alpha}{a-\cos x}\right\} d x=\left.\int_{0}^{\pi} \ln (\alpha-\cos x)\right|_{a} ^{b} d x=\int_{0}^{\pi} \ln \left(\frac{b-\cos x}{a-\cos x}\right) d x\left(^{*}\right)
$$

$$
\begin{equation*}
\int_{a}^{b} \frac{\pi d \alpha}{\sqrt{\alpha^{2}-1}}=\left.\pi \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)\right|_{a} ^{b}=\pi \ln \left(\frac{b+\sqrt{b^{2}-1}}{a+\sqrt{a^{2}-1}}\right) \tag{**}
\end{equation*}
$$

ตายสงษี่รา (*) ดิท (**) เธีเทตร:

$$
\int_{0}^{\pi} \ln \left(\frac{b-\cos x}{a-\cos x}\right) d x=\pi \ln \left(\frac{b+\sqrt{b^{2}-1}}{a+\sqrt{a^{2}-1}}\right) \text { ติऊโุธ่ } a, b>1 \text { q }
$$

มรากงมดก์ ๖:

โธีเยาตร $\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=f(x)$ โัณถ $y(0)=y^{\prime}(0)=0$ ฯ
sita $\frac{d y}{d x}=\int_{0}^{x} f(t) d t+c$ ธّ̛ i̛g $y^{\prime}(0)=0$
ตําใุ $c=0$ โทึสร $\frac{d y}{d x}=\int_{0}^{x} f(t) d t$ y

$$
y(x)=\iint_{D} f(t) d t d u
$$

โิน $D=\{(t, u): 0 \leq t \leq u \leq x\}$ ฯ

$$
y(x)=\int_{0}^{x}\left(\int_{0}^{u} f(t) d t\right) d u=\int_{0}^{x}\left(\int_{t}^{x} d u\right) f(t) d t=\int_{0}^{x}(x-t) f(t) d t \text { ติ๗ ฯ }
$$

$$
\begin{aligned}
& \text { - โบี } \mathrm{x}=0 \text { ฐึโูิ } \mathrm{u}=0 \text { ฯ } \\
& \text { - เชึ } x=2 \pi \quad \text { श่ใูิ } u=0 \text { ฯ } \\
& - \text { โกึ } x \rightarrow \pi-\varepsilon \text { รำษิ } u \rightarrow+\infty\left(\varepsilon \rightarrow 0^{+}\right) \text {ฯ } \\
& - \text { เบี } \mathrm{x} \rightarrow \pi+\varepsilon \text { झiปิ } \mathrm{u} \rightarrow-\infty\left(\varepsilon \rightarrow 0^{+}\right) \text {ч }
\end{aligned}
$$

เสีเนตร

$$
\begin{aligned}
& \int_{0}^{2 \pi} \frac{d x}{\alpha+\sin x}=\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\pi-\varepsilon} \frac{d x}{\alpha+\sin x}+\lim _{\varepsilon \rightarrow 0^{+}} \int_{\pi+\varepsilon}^{2 \pi} \frac{d x}{\alpha+\sin x} \\
& =\lim _{u \rightarrow+\infty} \int_{0}^{u} \frac{1}{\alpha+\frac{2 u}{1+u^{2}} \cdot \frac{2 d u}{1+u^{2}}+\lim _{u \rightarrow-\infty} \int_{u}^{2 \pi} \frac{1}{\alpha+\frac{2 u}{1+u^{2}}} \cdot \frac{2 d u}{1+u^{2}}} \\
& =\frac{2}{\alpha} \lim _{u \rightarrow+\infty} \int_{0}^{u} \frac{d u}{1+u^{2}+\frac{2 u}{\alpha}}+\frac{2}{\alpha} \lim _{u \rightarrow-\infty} \int_{u}^{2 \pi} \frac{d u}{1+u^{2}+\frac{2 u}{\alpha}} \\
& =\frac{2}{\alpha} \lim _{u \rightarrow+\infty} \int_{0}^{u} \frac{d u}{\left(u+\frac{1}{\alpha}\right)^{2}+\frac{\alpha^{2}-1}{\alpha^{2}}}+\frac{2}{\alpha} \lim _{u \rightarrow-\infty} \int_{u}^{2 \pi} \frac{d u}{\left(u+\frac{1}{\alpha}\right)^{2}+\frac{\alpha^{2}-1}{\alpha^{2}}} \\
& =\left.\frac{2}{\alpha \cdot \sqrt{\frac{\alpha^{2}-1}{\alpha^{2}}}} \tan ^{-1}\left(\frac{u}{\left.\sqrt{\left(\alpha^{2}-1\right) / \alpha^{2}}\right)}\right)\right|_{0} ^{+\infty}+\left.\frac{2}{\alpha \cdot \sqrt{\frac{\alpha^{2}-1}{\alpha^{2}}}} \tan ^{-1}\left(\frac{u}{\sqrt{\left(\alpha^{2}-1\right) / \alpha^{2}}}\right)\right|_{-\infty} ^{2 \pi} \\
& =\frac{2}{\sqrt{\alpha^{2}-1}}\left(\frac{\pi}{2}-0\right)+\frac{2}{\sqrt{\alpha^{2}-1}}\left(0+\frac{\pi}{2}\right)=\frac{2 \pi}{\sqrt{\alpha^{2}-1}} \text { ติสโุธ่ } \alpha>1 \text { ฯ }
\end{aligned}
$$

รถบรู9ีย

กิt $z=e^{i x}$ ํํ유 $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}=\frac{z-z^{-1}}{2 i}$ बิt $d z=i e^{i x} d x=i z d x$

$$
\int_{0}^{2 \pi} \frac{d x}{\alpha+\sin x}=\oint_{c} \frac{d z /(i z)}{\alpha+\left(z-z^{-1}\right) /(2 i)}=\oint_{c} \frac{2 d z}{z^{2}+2 i \alpha z-1}
$$

 กิณภส่เน้แร:

$$
\left[\begin{array}{l}
z_{1}=-i\left(\alpha+\sqrt{\alpha^{2}-1}\right) \\
z_{2}=i\left(-\alpha+\sqrt{\alpha^{2}-1}\right)
\end{array} \text { โตธ่ } \alpha>1\right.
$$

นนําสร $\left|z_{1}\right|=\left|-i\left(\alpha+\sqrt{\alpha^{2}-1}\right)\right|=\alpha+\sqrt{\alpha^{2}-1}>1$ [สธ่ $\alpha>1$
คิ่ $\left|z_{2}\right|=\left|\mathrm{i}\left(-\alpha+\sqrt{\alpha^{2}-1}\right)\right|=\frac{1}{\alpha+\sqrt{\alpha^{2}-1}}<1$ โุบ่ $\alpha>1$ ฯ

$$
\begin{aligned}
\operatorname{Res}_{z=z_{2}}\left(\frac{2}{z^{2}+2 i \alpha z-1}\right) & =\lim _{z \rightarrow z_{2}}\left(z-z_{2}\right) \frac{2}{z^{2}+2 i \alpha z-1} \\
& =\lim _{z \rightarrow z_{2}} \frac{2}{z+i \alpha+i \sqrt{\alpha^{2}-1}}=\frac{1}{i \sqrt{\alpha^{2}-1}}
\end{aligned}
$$

냉isss $\int_{0}^{2 \pi} \frac{d x}{\alpha+\sin x}=\oint_{c} \frac{2 d z}{z^{2}+2 i \alpha z-1}=2 \pi i \underset{z=z_{2}}{\operatorname{Res}}\left(\frac{2}{z^{2}+2 i \alpha z-1}\right)$ $=\frac{2 \pi i}{i \sqrt{\alpha^{2}-1}}=\frac{2 \pi}{\sqrt{\alpha^{2}-1}}$ ติฬโัธั่ $\alpha>1$ ฯ

ถาษล์ตภูร ก โธึเตตา $\int_{0}^{2 \pi} \frac{d x}{\alpha+\sin x}=\frac{2 \pi}{\sqrt{\alpha^{2}-1}}(\alpha>1)$
\$ทโฺฺ

$$
\int_{a}^{b}\left\{\int_{0}^{2 \pi} \frac{d x}{\alpha+\sin x}\right\} d \alpha=\int_{a}^{b} \frac{2 \pi}{\sqrt{\alpha^{2}-1}} d \alpha
$$

๔ฺษยูถ

$$
\int_{0}^{2 \pi}\left\{\int_{a}^{b} \frac{d \alpha}{\alpha+\sin x}\right\} d x=\left.2 \pi \ln \left(\alpha+\sqrt{\alpha^{2}-1}\right)\right|_{a} ^{b}
$$

ธฺษสูณ

$$
\begin{aligned}
& \left.\int_{0}^{2 \pi} \ln |\alpha+\sin x|\right|_{a} ^{b} d x=2 \pi \ln \left(\frac{b+\sqrt{b^{2}-1}}{a+\sqrt{a^{2}-1}}\right) \\
& \int_{0}^{2 \pi} \ln \left(\frac{b+\sin x}{a+\sin x}\right) d x=2 \pi \ln \left(\frac{b+\sqrt{b^{2}-1}}{a+\sqrt{a^{2}-1}}\right)
\end{aligned}
$$

ษึ

$$
\begin{aligned}
& \int_{0}^{2 \pi} \ln \left(\frac{5 / 3+\sin x}{5 / 4+\sin x}\right) d x=2 \pi \ln \left(\frac{5 / 3+\sqrt{(5 / 3)^{2}-1}}{5 / 4+\sqrt{(5 / 4)^{2}-1}}\right) \\
& 2 \pi \ln \frac{4}{3}+\int_{0}^{2 \pi} \ln \left(\frac{5+3 \sin x}{5+4 \sin x}\right) d x=2 \pi \ln \frac{3}{2}
\end{aligned}
$$

ต่ใ

$$
\int_{0}^{2 \pi} \ln \left(\frac{5+3 \sin x}{5+4 \sin x}\right) d x=2 \pi \ln \frac{3}{2}-2 \pi \ln \frac{4}{3}=2 \pi \ln \frac{9}{8} \text { ติส ฯ }
$$

1. เกึ $F(\alpha)=\int_{3 \alpha^{3}}^{2 \alpha^{2}} \sqrt{1+\alpha x} d x$, รึ $F^{\prime}(\alpha)$ y
2. เสี $\phi(\alpha)=\int_{\sqrt{\alpha}}^{1 / \alpha} \cos \alpha x^{2} d x, j \Pi \frac{d \phi}{d \alpha} q^{2}$
3. หบี $\psi(\alpha)=\int_{\alpha^{2}}^{\sqrt{\alpha^{2}+1}} \sin \left[(2 \alpha+1) x^{3}\right] d x, \operatorname{sก} \frac{d \psi}{d \alpha} q$
4. ก- โธี $\mathrm{G}(\alpha)=\int_{0}^{\alpha^{2}} \sqrt{1+\alpha^{2} \mathrm{x}} \mathrm{dx}$, กก $\frac{\mathrm{dG}}{\mathrm{d} \alpha}$ ตยริเามถึบมีฬ บ

$$
\int_{0}^{1} x^{p}(\ln x)^{m} d x=\frac{(-1)^{m} m!}{(p+1)^{m+1}}, m=1,2,3, \ldots .
$$

$$
\int_{0}^{\pi} \ln (1+\alpha \cos x) d x=\pi \ln \left(\frac{1+\sqrt{1-\alpha^{2}}}{2}\right),|\alpha|<1 q
$$

8. ชยาตูตู่

$$
\int_{0}^{\pi} \ln \left(1-2 \alpha \cos x+\alpha^{2}\right) d x=\left\{\begin{array}{cc}
\pi \ln \alpha^{2} \text { เงี }|\alpha|<1 \\
0 & \text { เง่ }|\alpha|>1
\end{array},\right.
$$

ธู่สิกูากรสกีเนด $|\alpha|=1$ ฯ
9. ช่ที่โูึ| $\int_{0}^{\pi} \frac{d x}{(5-3 \cos x)^{3}}=\frac{59 \pi}{2048}$ ฯ
10. โสายชยตูก็่สา

$$
\int_{0}^{1}\left\{\int_{1}^{2}\left(\alpha^{2}-x^{2}\right) d x\right\} d \alpha=\int_{1}^{2}\left\{\int_{0}^{1}\left(\alpha^{2}-x^{2}\right) d \alpha\right\} d x \quad q
$$

11. ก- ตณกร $\int_{0}^{2 \pi}(\alpha-\sin x) d x$ ฯ

$$
\int_{0}^{2 \pi}\left\{(b-\sin x)^{2}-(a-\sin x)^{2}\right\} d x=2 \pi\left(b^{2}-a^{2}\right)
$$

12. ก- โโทาตึเส่ $\int_{0}^{\pi / 2} \frac{d x}{1+\alpha \cos x}=\frac{\cos ^{-1} \alpha}{\sqrt{1-\alpha^{2}}} \quad(0 \leq \alpha<1)$ ฯ

$$
\int_{0}^{\pi / 2} \sec x \ln \left(\frac{1+b \cos x}{1+a \cos x}\right) d x=\frac{1}{2}\left\{\left(\cos ^{-1} a\right)^{2}-\left(\cos ^{-1} b\right)^{2}\right\}
$$

$\forall \mathrm{a} \in[0,1[, \forall \mathrm{~b} \in[0,1[$ y

$$
\int_{0}^{\pi / 2} \sec x \ln \left(1+\frac{1}{2} \cos x\right) d x=\frac{5 \pi^{2}}{72}
$$

$$
I_{M}=\int_{0}^{M} \frac{d x}{\left(x^{2}+\alpha^{2}\right)^{2}}=\frac{1}{2 \alpha^{3}} \tan ^{-1} \frac{M}{\alpha}+\frac{M}{2 \alpha^{2}\left(\alpha^{2}+M^{2}\right)}(\alpha \neq 0)
$$

2- आณกฉา $\int_{0}^{+\infty} \frac{d x}{\left(x^{2}+\alpha^{2}\right)^{2}}$ q
ติ- โตึ $\lim _{M \rightarrow+\infty} \frac{d}{d \alpha} \int_{0}^{M} \frac{d x}{\left(x^{2}+\alpha^{2}\right)^{2}}=\frac{d}{d \alpha} \lim _{M \rightarrow+\infty} \int_{0}^{M} \frac{d x}{\left(x^{2}+\alpha^{2}\right)^{2}}$ โึ૬ร?

9- M. Krasnov, A. Kissélev, G. Makarenko, Équations Intégrales, France, (C) Traduction française Editions Mir 1977.

๒- Richard Bronson, Differeatial Equations, New York, McGraw-Hill, Inc., Second Edition, 1994.
m- Murray R. Spiegel, Ph.D., Theory and Problems of Advanced Calcullus, New York, McGraw-Hill Book Co., 1981.

G- Stanley J. Farlow, An Introduction to Differential Equations and Their Applications, New York, McGraw-Hill, Inc., 1994.

E- Serge Lang, Complex Amalysis, USA, Addison-Wesley Publishing Company, Inc., 1977.
eb-S . L. Salas and Einar Hille, Calculus (One and Several Variables), New York, John Wiley \& Sons, Inc., Sixth Edition, 1990.
(1)- W . Keith Nicholson, Limear Algebra with Applications, New York, McGraw-Hill Ryerson Limited, Fourth Edition, 2003.

E-Maplesoft, Maple 9.50, a division of Waterloo Maple Inc., 2004.

